140 resultados para HPLC METHOD VALIDATION
Resumo:
This paper discusses a method, Generation in Context, for interrogating theories of music analysis and music perception. Given an analytic theory, the method consists of creating a generative process that implements the theory in reverse. Instead of using the theory to create analyses from scores, the theory is used to generate scores from analyses. Subjective evaluation of the quality of the musical output provides a mechanism for testing the theory in a contextually robust fashion. The method is exploratory, meaning that in addition to testing extant theories it provides a general mechanism for generating new theoretical insights. We outline our initial explorations in the use of generative processes for music research, and we discuss how generative processes provide evidence as to the veracity of theories about how music is experienced, with insights into how these theories may be improved and, concurrently, provide new techniques for music creation. We conclude that Generation in Context will help reveal new perspectives on our understanding of music.
Resumo:
Background For more than a decade emergency medicine organizations have produced guidelines, training and leadership for disaster management. However to date, there have been limited guidelines for emergency physicians needing to provide a rapid response to a surge in demand. The aim of this study is to identify strategies which may guide surge management in the Emergency Department. Method A working group of individuals experienced in disaster medicine from the Australasian College for Emergency Medicine Disaster Medicine Subcommittee (the Australasian Surge Strategy Working Group) was established to undertake this work. The Working Group used a modified Delphi technique to examine response actions in surge situations. The Working Group identified underlying assumptions from epidemiological and empirical understanding and then identified remedial strategies from literature and from personal experience and collated these within domains of space, staff, supplies, and system operation. Findings These recommendations detail 22 potential actions available to an emergency physician working in the context of surge. The Working Group also provides detailed guidance on surge recognition, triage, patient flow through the emergency department and clinical goals and practices. Discussion These strategies provide guidance to emergency physicians confronting the challenges of a surge in demand. The paper also identifies areas that merit future research including the measurement of surge capacity, constraints to strategy implementation, validation of surge strategies and measurement of strategy impacts on throughput, cost, and quality of care.
Resumo:
Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.
Resumo:
The two outcome indices described in a companion paper (Sanson et al., Child Indicators Research, 2009) were developed using data from the Longitudinal Study of Australian Children (LSAC). These indices, one for infants and the other for 4 year to 5 year old children, were designed to fill the need for parsimonious measures of children’s developmental status to be used in analyses by a broad range of data users and to guide government policy and interventions to support young children’s optimal development. This paper presents evidence from Wave 1data from LSAC to support the validity of these indices and their three domain scores of Physical, Social/Emotional, and Learning. Relationships between the indices and child, maternal, family, and neighborhood factors which are known to relate concurrently to child outcomes were examined. Meaningful associations were found with the selected variables, thereby demonstrating the usefulness of the outcome indices as tools for understanding children’s development in their family and socio-cultural contexts. It is concluded that the outcome indices are valuable tools for increasing understanding of influences on children’s development, and for guiding policy and practice to optimize children’s life chances.