171 resultados para Green clay
Resumo:
Urban green infrastructure can help cities adapt to climate change. Spatial planning can play an important role in utilizing green infrastructure for adaptation. Yet climate change risks represent a different sort of challenge for planning institutions. This paper aims to address two issues arising from this challenge. First, it defines the concept of green infrastructure within the context of climate adaptation. Second, it identifies and puts into perspective institutional barriers to adopting green infrastructure for climate adaptation, including path dependence. We begin by arguing that there is growing confusion among planners and policy makers about what constitutes green infrastructure. Definitional ambiguity may contribute to inaction on climate change adaptation, because it muddies existing programs and initiatives that are to do with green-space more broadly, which in turn feeds path dependency. We then report empirical findings about how planners perceive the institutional challenge arising from climate change and the adoption of green infrastructure as an adaptive response. The paper concludes that spatial planners generally recognize multiple rationales associated with green infrastructure. However they are not particularly keen on institutional innovation and there is a tendency for path dependence. We propose a conceptual model that explicitly recognizes such institutional factors. This paper contributes to the literature by showing that agency and institutional dimensions are a limiting factor in advancing the concept of green infrastructure within the context of climate change adaptation.
Resumo:
Peggy Shaw’s RUFF, (USA 2013) and Queensland Theatre Company’s collaboration with Queensland University of Technology, Total Dik!, (Australia 2013) overtly and evocatively draw on an aestheticized use of the cinematic techniques and technologies of Chroma Key to reveal the tensions in their production and add layers to their performances. In doing so they offer invaluable insight where the filmic and theatrical approaches overlap. This paper draws on Eckersall, Grehan and Scheer’s New Media Dramaturgy (2014) to reposition the frame as a contribution to intermedial theatre and performance practices in light of increasing convergence between seemingly disparate discourses. In RUFF, the scenic environment replicates a chroma-key ‘studio’ which facilitates the reconstruction of memory displaced after a stroke. RUFF uses the screen and projections to recall crooners, lounge singers, movie stars, rock and roll bands, and an eclectic line of eccentric family members living inside Shaw. While the show pays tribute to those who have kept her company across decades of theatrical performance, use of non-composited chroma-key technique as a theatrical device and the work’s taciturn revelation of the production process during performance, play a central role in its exploration of the juxtaposition between its reconstructed form and content. In contrast Total Dik! uses real-time green screen compositing during performance as a scenic device. Actors manipulate scale models, refocus cameras and generate scenes within scenes in the construction of the work’s examination of an isolated Dictator. The ‘studio’ is again replicated as a site for (re)construction, only in this case Total Dik! actively seeks to reveal the process of production as the performance plays out. Building on RUFF, and other works such as By the Way, Meet Vera Stark, (2012) and Hotel Modern’s God’s Beard (2012), this work blends a convergence of mobile technologies, models, and green screen capture to explore aspects of transmedia storytelling in a theatrical environment (Jenkins, 2009, 2013). When a green screen is placed on stage, it reads at once as metaphor and challenge to the language of theatre. It becomes, or rather acts, as a ‘sign’ that alludes to the nature of the reconstructed, recomposited, manipulated and controlled. In RUFF and in Total Dik!, it is also a place where as a mode of production and subsequent reveal, it adds weight to performance. These works are informed by Auslander (1999) and Giesenkam (2007) and speak to and echo Lehmann’s Postdramatic Theatre (2006). This paper’s consideration of the integration of studio technique and live performance as a dynamic approach to multi-layered theatrical production develops our understanding of their combinatory use in a live performance environment.
Resumo:
This project developed and assessed a standard operating procedure for monitoring microbiological aerosol levels and dispersal from Australian industrial composting facilities. Development occurred via seasonal monitoring of such operations with evaluation of optimal microbial indicator organisms, sampling and analysis logistics. The resultant procedure allows practical end-user assessment of compost-associated bioaerosol levels, and potential health risks to proximal residential populations encroaching on such composting facilities and on-site industrial operations personnel.
Resumo:
Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.
Resumo:
The mineral fraipontite has been studied by using a combination of scanning electron microscopy with energy dispersive analysis and vibrational spectroscopy (infrared and Raman). Fraipontite is a member of the 1:1 clay minerals of the kaolinite-serpentine group. The mineral contains Zn and Cu and is of formula (Cu,Zn,Al)3(Si,Al)2O5(OH)4. Qualitative chemical analysis of fraipontite shows an aluminium silicate mineral with amounts of Cu and Zn. This kaolinite type mineral has been characterised by Raman and infrared spectroscopy; in this way aspects about the molecular structure of fraipontite clay are elucidated.
Resumo:
Despite recent efforts to assess the release of nanoparticles to the workplace during different nanotechnology activities, the existence of a generalizable trend in the particle release has yet to be identified. This study aimed to characterize the release of synthetic clay nanoparticles from a laboratory-based jet milling process by quantifying the variations arising from primary particle size and surface treatment of the material used, as well as the feed rate of the machine. A broad range of materials were used in this study, and the emitted particles mass (PM2.5) and number concentrations (PNC) were measured at the release source. Analysis of variance, followed by linear mixed-effects modeling, was applied to quantify the variations in PM2.5 and PNC of the released particles caused by the abovementioned factors. The results confirmed that using materials of different primary size and surface treatment affects the release of the particles from the same process by causing statistically-significant variations in PM2.5 and PNC. The interaction of these two factors should also be taken into account as it resulted in variations in the measured particles release properties. Furthermore, the feed rate of the milling machine was confirmed to be another influencing parameter. Although this research does not identify a specific pattern in the release of synthetic clay nanoparticles from the jet milling process generalizable to other similar settings, it emphasizes that each tested case should be handled individually in terms of exposure considerations.
Resumo:
Field monitoring is an important means for understanding soil behaviour and its interaction with buried structures such as pipeline. This paper details the successful instrumentation of a section of an in-service cast iron water main buried in an area of reactive clay where frequent water pipe breakage has been observed. The instrumentation included measurement of pipe strain; pipe water pressure and temperature; soil pressure, temperature, moisture content and matric suction, as well as the meteorological conditions on site. The data generally indicated that changes in soil temperature, suction and moisture content were directly related to the local climatic variations. The suction and moisture content data indicated that the soil profile at the site down to around 700 mm, and probably down to 1000 mm, is affected by changes in surface weather, while soil conditions below this depth appear to be more stable. Analysis of pipe strain indicated that the pipe behaves like a cantilever beam, with the top experiencing predominantly tensile strains during summer. Subsequently, these trends reduce to compressive strains as soil swelling occurs due to increase of moisture content with the onset of winter.
Resumo:
This thesis provides a review of 199 papers published on Green IT/IS between 2007−2014, in order to present taxonomy of segments in Green IT/IS publications, where the segments are later used for multiple analyses to facilitate future research and to provide a retrospective analysis of existing knowledge and gaps thereof. This research also attempts to make a unique contribution to our understanding of Green IT/IS, by consolidating papers it observes current patterns of literature through approach analysis and segmentation, as well as allocating studies to the technology, process, or outcome (TPO) stage. Highlighting the necessity of a consolidated approach, these classification systems have been combined into a TPO matrix so that the studies could be arranged according to which stage of the Green IT/IS cycle they were focused on. We believe that these analyses will provide a solid platform from which future Green IT/IS research can be launched.
Resumo:
This chapter is concerned with the prospects for a safe and sustainable environment in a fair and just world. At present, these prospects look bleak. However there are a number of legal developments and ethical principles on which to build, including the European Convention on the Protection of the Environment through Criminal Law, notions of environmental, ecological and species justice, and conceptions of human rights. The chapter considers these in five sections: first providing an overview and exploring the links between human rights and environmental issues; then examining examples of environmental crimes / harms and attempts to regulate or criminalise these; before outlining the development of a Green Criminology and proposals for an international law against ecocide as a framework for addressing this range of challenges. Finally, concluding comments draw attention to debates and directions for discussion and research.
Resumo:
The problem of greenwashing requires a robust, integrated approach to law reform to discourage a practice that drowns out the legitimate voices.
Resumo:
Efforts to reduce carbon emissions in the buildings sector have been focused on encouraging green design, construction and building operation; however, the business case is not very compelling if considering the energy cost savings alone. In recent years green building has been driven by a sense that it will improve the productivity of occupants,something with much greater economic returns than energy savings. Reducing energy demand in green commercial buildings in a way that encourages greater productivity is not yet well understood as it involves a set of complex and interdependent factors. This project investigates these factors and focuses on the performance of and interaction between: green design elements, internal environmental quality, occupant experience, tenant/leasing agreements, and building regulation and management. This paper suggests six areas of strategic research that are needed to understand how conditions can be created to support productivity in green buildings, and deliver significant energy consumption reductions.
Resumo:
In this paper we discuss the use of a series of column experiments to improve understanding of the effect irrigation water chemistry (saline solutions) has on measurements of saturated hydraulic conductivity (Ksat) of a sodic clay soil. We highlight in particular the use of extended leaching periods to determine whether the duration of leaching affects the results. In the experiments, mixed cation solutions of two different salinity levels, 50 meq/L and 100 meq/L, were applied under constant head to columns of a repacked sodic clay soil using three replicates for each treatment. The maximum Ksat measured during leaching with the 100 meq/L solution was approximately double the maximum Ksat measured during leaching with the 50 meq/L solution. Measured flow rates were found to increase rapidly after flow commenced then decrease gradually until flow rates became stable. The final, stable flow rate was roughly 80% less than the maximum flow rate measured. Reasons for these changes in saturated hydraulic conductivity are discussed. The key finding from these experiments is that long term leaching, involving significantly more pore volumes than is commonly reported in the literature, is required to obtain a ‘stable’ Ksat. We recommend that further studies be carried out to (1) determine whether similar behaviour in Ksat occurs in a wide range of sodic clay soils and (2) to help build a better understanding of the causes and implications of the observed behaviour in Ksat.
Resumo:
Management of sodic soils under irrigation often requires application of chemical ameliorants to improve permeability combined with leaching of excess salts. Modeling irrigation, soil treatments, and leaching in these sodic soils requires a model that can adequately represent the physical and chemical changes in the soil associated with the amelioration process. While there are a number of models that simulate reactive solute transport, UNSATCHEM and HYDRUS-1D are currently the only models that also include an ability to simulate the impacts of soil chemistry on hydraulic conductivity. Previous researchers have successfully applied these models to simulate amelioration experiments on a sodic loam soil. To further gauge their applicability, we extended the previous work by comparing HYDRUS simulations of sodic soil amelioration with the results from recently published laboratory experiments on a more reactive, repacked sodic clay soil. The general trends observed in the laboratory experiments were able to be simulated using HYDRUS. Differences between measured and simulated results were attributed to the limited flexibility of the function that represents chemistry-dependent hydraulic conductivity in HYDRUS. While improvements in the function could be made, the present work indicates that HYDRUS-UNSATCHEM captures the key changes in soil hydraulic properties that occur during sodic clay soil amelioration and thus extends the findings of previous researchers studying sodic loams.
Resumo:
Amelioration of sodic soils is commonly achieved by applying gypsum, which increases soil hydraulic conductivity by altering soil chemistry. The magnitude of hydraulic conductivity increases expected in response to gypsum applications depends on soil properties including clay content, clay mineralogy, and bulk density. The soil analyzed in this study was a kaolinite rich sodic clay soil from an irrigated area of the Lower Burdekin coastal floodplain in tropical North Queensland, Australia. The impact of gypsum amelioration was investigated by continuously leaching soil columns with a saturated gypsum solution, until the hydraulic conductivity and leachate chemistry stabilized. Extended leaching enabled the full impacts of electrolyte effects and cation exchange to be determined. For the columns packed to 1.4 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.41 ± 0.06 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 4.3 ± 2.12 mEq/100 g, and hydraulic conductivity increased to 0.15 ± 0.04 cm/d. For the columns packed to 1.3 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.51 ± 0.03 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 0.55 ± 0.36 mEq/100 g, and hydraulic conductivity increased to 0.96 ± 0.53 cm/d. The results of this study highlight that both sodium and magnesium need to be taken into account when determining the suitability of water quality for irrigation of sodic soils and that soil bulk density plays a major role in controlling the extent of reclamation that can be achieved using gypsum applications.
Resumo:
Green infrastructure is considered as a strategic approach to address the ecological and social impacts of urban sprawl. The main elements of green infrastructure have been well established and include a series of multifunctional ecological systems, such as green urban space, green road infrastructure and the links between these systems. However, it should be noted that the elements of green road infrastructure have only been briefly mentioned in isolated life cycle stages, e.g. design, procurement, construction, maintenance and operation. The definition of green road infrastructure and the elements in green road infrastructure projects remain largely unknown. To explore the elements in green road infrastructure, a critical review was adopted. As the development of green road infrastructure projects is guided by rating systems, a comparison of three major green roads rating systems, including GreenroadsTM, EnvisionTM and Infrastructure Sustainability Rating Tool—IS, was conducted. The comparison reveals that green roads can be defined as road projects that have superior performance in economic, social and environmental sustainability. The sustainability features in green roads mainly include environmental sustainability, social sustainability, economic sustainability, quality, pavement technology and innovation. The results will contribute to an increased understanding of green roads and will be useful to improve the performance of road projects on these sustainability features.