272 resultados para Graph mining
Resumo:
It is a big challenge to clearly identify the boundary between positive and negative streams. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on RCV1, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
Data mining techniques extract repeated and useful patterns from a large data set that in turn are utilized to predict the outcome of future events. The main purpose of the research presented in this paper is to investigate data mining strategies and develop an efficient framework for multi-attribute project information analysis to predict the performance of construction projects. The research team first reviewed existing data mining algorithms, applied them to systematically analyze a large project data set collected by the survey, and finally proposed a data-mining-based decision support framework for project performance prediction. To evaluate the potential of the framework, a case study was conducted using data collected from 139 capital projects and analyzed the relationship between use of information technology and project cost performance. The study results showed that the proposed framework has potential to promote fast, easy to use, interpretable, and accurate project data analysis.
Resumo:
Decision table and decision rules play an important role in rough set based data analysis, which compress databases into granules and describe the associations between granules. Granule mining was also proposed to interpret decision rules in terms of association rules and multi-tier structure. In this paper, we further extend granule mining to describe the relationships between granules not only by traditional support and confidence, but by diversity and condition diversity as well. Diversity measures how diverse of a granule associated with the other ganules, it provides a kind of novel knowledge in databases. Some experiments are conducted to test the proposed new concepts for describing the characteristics of a real network traffic data collection. The results show that the proposed concepts are promising.
Resumo:
The research team recognized the value of network-level Falling Weight Deflectometer (FWD) testing to evaluate the structural condition trends of flexible pavements. However, practical limitations due to the cost of testing, traffic control and safety concerns and the ability to test a large network may discourage some agencies from conducting the network-level FWD testing. For this reason, the surrogate measure of the Structural Condition Index (SCI) is suggested for use. The main purpose of the research presented in this paper is to investigate data mining strategies and to develop a prediction method of the structural condition trends for network-level applications which does not require FWD testing. The research team first evaluated the existing and historical pavement condition, distress, ride, traffic and other data attributes in the Texas Department of Transportation (TxDOT) Pavement Maintenance Information System (PMIS), applied data mining strategies to the data, discovered useful patterns and knowledge for SCI value prediction, and finally provided a reasonable measure of pavement structural condition which is correlated to the SCI. To evaluate the performance of the developed prediction approach, a case study was conducted using the SCI data calculated from the FWD data collected on flexible pavements over a 5-year period (2005 – 09) from 354 PMIS sections representing 37 pavement sections on the Texas highway system. The preliminary study results showed that the proposed approach can be used as a supportive pavement structural index in the event when FWD deflection data is not available and help pavement managers identify the timing and appropriate treatment level of preventive maintenance activities.
Resumo:
Key decisions at the collection, pre-processing, transformation, mining and interpretation phase of any knowledge discovery from database (KDD) process depend heavily on assumptions and theorectical perspectives relating to the type of task to be performed and characteristics of data sourced. In this article, we compare and contrast theoretical perspectives and assumptions taken in data mining exercises in the legal domain with those adopted in data mining in TCM and allopathic medicine. The juxtaposition results in insights for the application of KDD for Traditional Chinese Medicine.
Resumo:
Each year, organizations in Australian mining industry (asset intensive industry) spend substantial amount of capital (A$86 billion in 2009-10) (Statistics, 2011) in acquiring engineering assets. Engineering assets are put to use in operations to generate value. Different functions (departments) of an organization have different expectations and requirements from each of the engineering asset e.g. return on investment, reliability, efficiency, maintainability, low cost of running the asset, low or nil environmental impact and easy of disposal, potential salvage value etc. Assets are acquired from suppliers or built by service providers and or internally. The process of acquiring assets is supported by procurement function. One of the most costly mistakes that organizations can make is acquiring the inappropriate or non-conforming assets that do not fit the purpose. The root cause of acquiring non confirming assets belongs to incorrect acquisition decision and the process of making decisions. It is very important that an asset acquisition decision is based on inputs and multi-criteria of each function within the organization which has direct or indirect impact on the acquisition, utilization, maintenance and disposal of the asset. Literature review shows that currently there is no comprehensive process framework and tool available to evaluate the inclusiveness and breadth of asset acquisition decisions that are taken in the Mining Organizations. This thesis discusses various such criteria and inputs that need to be considered and evaluated from various functions within the organization while making the asset acquisition decision. Criteria from functions such as finance, production, maintenance, logistics, procurement, asset management, environment health and safety, material management, training and development etc. need to be considered to make an effective and coherent asset acquisition decision. The thesis also discusses a tool that is developed to be used in the multi-criteria and cross functional acquisition decision making. The development of multi-criteria and cross functional inputs based decision framework and tool which utilizes that framework to formulate cross functional and integrated asset acquisition decisions are the contribution of this research.
Resumo:
The sky is falling because the much-vaunted mining ‘boom’ is heading for ‘bust’. The fear-mongering by politicians, the industry and the media has begun in earnest. On ABC TV's 7:30 program on 22 August 2012, Federal Opposition Leader Tony Abbott blamed the Minerals Resource Rent Tax and the Carbon Tax for making ‘a bad investment environment much, much worse’ for the mining industry. The following day, Australia's Resources and Energy Minister Martin Ferguson told us on ABC radio that ‘the resources boom is over’. This must be true because, remember, we were warned to ‘Get ready for the end of the boom’ (David Uren, Economics Editor for The Australian 19 May 2012) due to the ‘Australian resource boom losing steam’ (David Winning & Robb M. Stewart, Wall Street Journal 21 August 2012). Besides, there is ‘unarguable evidence’ that Australia's production costs are ‘too expensive’ and ‘too uncompetitive’: mining magnate Gina Rinehart said so in a YouTube video placed on the Sydney Mining Club's website on 5 September 2012. Can this really be so? What is happening to the mining boom and to the people who depend upon it?
Resumo:
Australia is experiencing an unprecedented expansion in mining due to intense demand from Asian economies thirsty for Australia’s non-renewable resources, with over $260 billion worth of capital investment currently in the pipeline (BREE 10). The scale of the present boom coupled with the longer term intensification of competitiveness in the global resources sector is changing the very nature of mining operations in Australia. Of particular note is the increasingly heavy reliance on a non-resident workforce, currently sourced from within Australia but with some recent proposals for projects to draw on overseas guest workers. This is no longer confined, as it once was, to remote, short term projects or to exploration and construction phases of operations, but is emerging as the preferred industry norm. Depending upon project location, workers may either fly-in, fly-out (FIFO) or drive-in, drive-out (DIDO), the critical point being that these operations are frequently undertaken in or near established communities. Drawing primarily on original fieldwork in one of Australia’s mining regions at the forefront of the boom, this paper explores some of the local impacts of new mining regimes, in particular their tendency to undermine collective solidarities, promote social division and fan cultural conflict.
Resumo:
The mining environment, being complex, irregular, and time-varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two nonparametric transforms, namely, rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. The objective is to produce a stereo vision sensor suited to close-range scenes consisting primarily of rocks. This sensor should be able to produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this investigation. A number of area based matching metrics have been implemented, including the SAD, SSD, NCC, and their zero-meaned versions. The NCC and the zero meaned SAD and SSD were found to produce the disparity maps with the highest proportion of valid matches. The plain SAD and SSD were the least computationally expensive, due to all their operations taking place in integer arithmetic, however, they were extremely sensitive to radiometric distortion. Non-parametric techniques for matching, in particular, the rank and the census transform, have also been investigated. The rank and census transforms were found to be robust with respect to radiometric distortion, as well as being able to produce disparity maps with a high proportion of valid matches. An additional advantage of both the rank and the census transform is their amenability to fast hardware implementation.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper assesses the suitability of a number of matching techniques for use in a stereo vision sensor for close range scenes consisting primarily of rocks. These include traditional area-based matching metrics, and non-parametric transforms, in particular, the rank and census transforms. Experimental results show that the rank and census transforms exhibit a number of clear advantages over area-based matching metrics, including their low computational complexity, and robustness to certain types of distortion.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two non-parametric transforms, namely, the rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.
Resumo:
Global demand for minerals and energy products has fuelled Australia’s recent ‘resources boom’ and led to the rapid expansion of mining projects not solely in remote regions but increasingly in long-settled traditionally agriculture-dependent rural areas. Not only has this activity radically changed the economic geography of the nation but a fundamental shift has also occurred to accommodate the acceleration in industry labour demands. In particular, the rush to mine has seen the entrenchment of workforce arrangements largely dependent on fly-in, fly-out (FIFO) and drive–in, drive–out (DIDO) workers. This form of employment has been highly contentious in rural communities at the frontline of resource sector activities. In the context of structural sweeping changes, the selection of study locations informed by a range of indices of violence. Serendipitously we carried out fieldwork in communities undergoing rapid change as a result of expanding resource sector activities. The presence of large numbers of non-resident FIFO and DIDO workers was transforming these frontline communities. This chapter highlights some implications of these changes, drawing upon one particular location, which historically depended on agriculture but has undergone redefinition through mining.