176 resultados para GLOBULAR-CLUSTERS
Resumo:
Approximate clone detection is the process of identifying similar process fragments in business process model collections. The tool presented in this paper can efficiently cluster approximate clones in large process model repositories. Once a repository is clustered, users can filter and browse the clusters using different filtering parameters. Our tool can also visualize clusters in the 2D space, allowing a better understanding of clusters and their member fragments. This demonstration will be useful for researchers and practitioners working on large process model repositories, where process standardization is a critical task for increasing the consistency and reducing the complexity of the repository.
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
This thesis is concerned with understanding what it is like to live with a physical impairment in Taiwan. Constructionism was used as the epistemological stance to guide the study and Heideggerian interpretive phenomenology was used as the theoretical perspective. Information was gained through a series of in-depth interviews with seven Taiwanese adults with a physical impairment living in the community. They were recruited from Yunlin and Tainan Counties in Taiwan. Study participants were seen as research partners who had expertise in understanding disability, and the researcher was seen as a learner. Grounded theory principles were used to develop the theory "it is more than just the impairment" from the information provided by the participants. According to their descriptions of how they lived their lives, participants are grouped into three clusters. These are ‘fortress ladies’, ‘social networkers’ and ‘the mind man’. The grounded theory developed portrays their lives, providing a vivid picture of living a life with a physical impairment in Taiwan. The study’s findings contribute to three main areas. First, as an occupational therapist and with my growing understanding of disability learned from the study participants, I recognize the agency of people with an impairment and their expertise in disability. Thus, I argue the need for health professionals to build alliances with them, and suggest ways to achieve such a relationship. Second, I propose the developed conceptual framework is suitable for exploring lived experience in other research areas; I discuss the implications of the subtle interactions between impaired people’s body and mind; I also present three impressive lived experiences provided by study participants as exemplars of the findings, and these form the foundation for discussion. Finally, the development of "it is more than just the impairment" provides a basis from which to theorize disability in a more holistic way.
Resumo:
Exponential growth of genomic data in the last two decades has made manual analyses impractical for all but trial studies. As genomic analyses have become more sophisticated, and move toward comparisons across large datasets, computational approaches have become essential. One of the most important biological questions is to understand the mechanisms underlying gene regulation. Genetic regulation is commonly investigated and modelled through the use of transcriptional regulatory network (TRN) structures. These model the regulatory interactions between two key components: transcription factors (TFs) and the target genes (TGs) they regulate. Transcriptional regulatory networks have proven to be invaluable scientific tools in Bioinformatics. When used in conjunction with comparative genomics, they have provided substantial insights into the evolution of regulatory interactions. Current approaches to regulatory network inference, however, omit two additional key entities: promoters and transcription factor binding sites (TFBSs). In this study, we attempted to explore the relationships among these regulatory components in bacteria. Our primary goal was to identify relationships that can assist in reducing the high false positive rates associated with transcription factor binding site predictions and thereupon enhance the reliability of the inferred transcription regulatory networks. In our preliminary exploration of relationships between the key regulatory components in Escherichia coli transcription, we discovered a number of potentially useful features. The combination of location score and sequence dissimilarity scores increased de novo binding site prediction accuracy by 13.6%. Another important observation made was with regards to the relationship between transcription factors grouped by their regulatory role and corresponding promoter strength. Our study of E.coli ��70 promoters, found support at the 0.1 significance level for our hypothesis | that weak promoters are preferentially associated with activator binding sites to enhance gene expression, whilst strong promoters have more repressor binding sites to repress or inhibit gene transcription. Although the observations were specific to �70, they nevertheless strongly encourage additional investigations when more experimentally confirmed data are available. In our preliminary exploration of relationships between the key regulatory components in E.coli transcription, we discovered a number of potentially useful features { some of which proved successful in reducing the number of false positives when applied to re-evaluate binding site predictions. Of chief interest was the relationship observed between promoter strength and TFs with respect to their regulatory role. Based on the common assumption, where promoter homology positively correlates with transcription rate, we hypothesised that weak promoters would have more transcription factors that enhance gene expression, whilst strong promoters would have more repressor binding sites. The t-tests assessed for E.coli �70 promoters returned a p-value of 0.072, which at 0.1 significance level suggested support for our (alternative) hypothesis; albeit this trend may only be present for promoters where corresponding TFBSs are either all repressors or all activators. Nevertheless, such suggestive results strongly encourage additional investigations when more experimentally confirmed data will become available. Much of the remainder of the thesis concerns a machine learning study of binding site prediction, using the SVM and kernel methods, principally the spectrum kernel. Spectrum kernels have been successfully applied in previous studies of protein classification [91, 92], as well as the related problem of promoter predictions [59], and we have here successfully applied the technique to refining TFBS predictions. The advantages provided by the SVM classifier were best seen in `moderately'-conserved transcription factor binding sites as represented by our E.coli CRP case study. Inclusion of additional position feature attributes further increased accuracy by 9.1% but more notable was the considerable decrease in false positive rate from 0.8 to 0.5 while retaining 0.9 sensitivity. Improved prediction of transcription factor binding sites is in turn extremely valuable in improving inference of regulatory relationships, a problem notoriously prone to false positive predictions. Here, the number of false regulatory interactions inferred using the conventional two-component model was substantially reduced when we integrated de novo transcription factor binding site predictions as an additional criterion for acceptance in a case study of inference in the Fur regulon. This initial work was extended to a comparative study of the iron regulatory system across 20 Yersinia strains. This work revealed interesting, strain-specific difierences, especially between pathogenic and non-pathogenic strains. Such difierences were made clear through interactive visualisations using the TRNDifi software developed as part of this work, and would have remained undetected using conventional methods. This approach led to the nomination of the Yfe iron-uptake system as a candidate for further wet-lab experimentation due to its potential active functionality in non-pathogens and its known participation in full virulence of the bubonic plague strain. Building on this work, we introduced novel structures we have labelled as `regulatory trees', inspired by the phylogenetic tree concept. Instead of using gene or protein sequence similarity, the regulatory trees were constructed based on the number of similar regulatory interactions. While the common phylogentic trees convey information regarding changes in gene repertoire, which we might regard being analogous to `hardware', the regulatory tree informs us of the changes in regulatory circuitry, in some respects analogous to `software'. In this context, we explored the `pan-regulatory network' for the Fur system, the entire set of regulatory interactions found for the Fur transcription factor across a group of genomes. In the pan-regulatory network, emphasis is placed on how the regulatory network for each target genome is inferred from multiple sources instead of a single source, as is the common approach. The benefit of using multiple reference networks, is a more comprehensive survey of the relationships, and increased confidence in the regulatory interactions predicted. In the present study, we distinguish between relationships found across the full set of genomes as the `core-regulatory-set', and interactions found only in a subset of genomes explored as the `sub-regulatory-set'. We found nine Fur target gene clusters present across the four genomes studied, this core set potentially identifying basic regulatory processes essential for survival. Species level difierences are seen at the sub-regulatory-set level; for example the known virulence factors, YbtA and PchR were found in Y.pestis and P.aerguinosa respectively, but were not present in both E.coli and B.subtilis. Such factors and the iron-uptake systems they regulate, are ideal candidates for wet-lab investigation to determine whether or not they are pathogenic specific. In this study, we employed a broad range of approaches to address our goals and assessed these methods using the Fur regulon as our initial case study. We identified a set of promising feature attributes; demonstrated their success in increasing transcription factor binding site prediction specificity while retaining sensitivity, and showed the importance of binding site predictions in enhancing the reliability of regulatory interaction inferences. Most importantly, these outcomes led to the introduction of a range of visualisations and techniques, which are applicable across the entire bacterial spectrum and can be utilised in studies beyond the understanding of transcriptional regulatory networks.
Resumo:
Allegations of child sexual abuse in Family Court cases have gained increasing attention. The study investigates factors involved in Family Court cases involving allegations of child sexual abuse. A qualitative methodology was employed to examine Records of Judgement and Psychiatric Reports for 20 cases distilled from the data corpus of 102 cases. A seven-stage methodology was developed utilising a thematic analysis process informed by principles of grounded theory and phenomenology. The explication of eight thematic clusters was undertaken. The findings point to complex issues and dynamics in which child sexual abuse allegations have been raised. The alleging parent’s allegations of sexual abuse against their ex-partner may be: the expression of unconscious deep fears for their children’s welfare, or an action to meet their needs for personal affirmation in the context of the painful upheaval of a relationship break-up. Implications of the findings are discussed.
Resumo:
While highly cohesive groups are potentially advantageous they are also often correlated with the emergence of knowledge and information silos based around those same functional or occupational clusters. Consequently, an essential challenge for engineering organisations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. This paper acts as a primer for those seeking to gain an understanding of the design, functionality and utility of a suite of software tools generically termed social media technologies in the context of optimising the management of tacit engineering knowledge. Underpinned by knowledge management theory and using detailed case examples, this paper explores how social media technologies achieve such goals, allowing for the transfer of knowledge by tapping into the tacit and explicit knowledge of disparate groups in complex engineering environments.
Resumo:
With saturation within domestic marketplaces and increased growth opportunities overseas, many financial service providers are investing in foreign markets. However, cultural attitudes towards money can present market entry challenges to financial service providers. The industry would therefore benefit from a strategic model that helps to align financial marketing mixes with the cultural dimensions of a foreign market. The Financial Services Cultural Orientation (FSCO) Matrix has therefore been designed, with three cultural dimensions identified which influence preference for financial products; preference for cash, aversion to debt and savings orientation. Based on a combination of these dimensions and their relative strength within a culture, eight different consumer segments for financial products are identified, and marketing strategies for each consumer segment are then proposed. Three cultural clusters from the GLOBE Project House et al. (2002) are used to highlight possible geographic markets for each of these consumer segments. In particular, this paper focuses on GLOBE’s Confucian Asia, Southern Asia and Anglo cultural clusters, as these clusters represent the most well established financial markets in the world and the fastest growing financial markets for the future. The FSCO Matrix provides the financial services industry with an innovative and practical tool for addressing cross-cultural challenges and developing successful marketing strategies for entry into foreign markets.
Resumo:
Sampling of the El Chichón stratospheric cloud in early May and in late July, 1982, showed that a significant proportion of the cloud consisted of solid particles between 2 μm and 40 μm size. In addition, many particles may have been part of larger aggregates or clusters that ranged in size from < 10 μm to > 50 μm. The majority of individual grains were angular aluminosilicate glass shards with various amounts of smaller, adhering particles. Surface features on individual grains include sulfuric acid droplets and larger (0.5 μm to 1 μm) sulfate gel droplets with various amounts of Na, Mg, Ca and Fe. The sulfate gels probably formed by the interaction of sulfur-rich gases and solid particles within the cloud soon after eruption. Ca-sulfate laths may have formed by condensation within the plume during eruption, or alternatively, at a later stage by the reaction of sulfuric acid aerosols with ash fragments within the stratospheric cloud. A Wilson-Huang formulation for the settling rate of individual particles qualitatively agrees with the observed particle-size distribution for a period at least four months after injection of material into the stratosphere. This result emphasizes the importance of particle shape in controlling the settling rate of volcanic ash from the stratosphere.
Resumo:
BACKGROUND: Stromal signalling increases the lateral cell adhesions of prostate epithelial cells grown in 3D culture. The aim of this study was to use microarray analysis to identify significant epithelial signalling pathways and genes in this process. METHODS: Microarray analysis was used to identify genes that were differentially expressed when epithelial cells were grown in 3D Matrigel culture with stromal co-culture compared to without stroma. Two culture models were employed: primary epithelial cells (ten samples) and an epithelial cell line (three experiments). A separate microarray analysis was performed on each model system and then compared to identify tissue-relevant genes in a cell line model. RESULTS: TGF beta signalling was significantly ranked for both model systems and in both models the TGF beta signalling gene SOX4 was significantly down regulated. Analysis of all differentially expressed genes to identify genes that were common to both models found several morphology related gene clusters; actin binding (DIAPH2, FHOD3, ABLIM1, TMOD4, MYH10), GTPase activator activity (BCR, MYH10), cytoskeleton (MAP2, MYH10, TMOD4, FHOD3), protein binding (ITGA6, CD44), proteinaceous extracellular matrix (NID2, CILP2), ion channel/ ion transporter activity (CACNA1C, CACNB2, KCNH2, SLC8A1, SLC39A9) and genes associated with developmental pathways (POFUT1, FZD2, HOXA5, IRX2, FGF11, SOX4, SMARCC1). CONCLUSIONS: In 3D prostate cultures, stromal cells increase lateral epithelial cell adhesions. We show that this morphological effect is associated with gene expression changes to TGF beta signalling, cytoskeleton and anion activity.
Resumo:
Sequencing of mba gene fragments of reference strains of Ureaplasma urealyticum serovars 1, 3, 6, 14, in addition to 33 clinical U. urealyticum isolates is reported. A phylogenetic tree deduced from an alignment of these sequences clearly demonstrates two major clusters (confidence limit 100%), which equate to the parvo and T960 biovars, and five types which we have designated mba 1, 3, 6, 8 and X. These relationships are supported by bootstrap analysis. Polymorphisms within the mba fragment of types mba 1, 3, and 6 were used to define nine subtypes (mba 1a, 1b, 3a, 3b, 3c, 3d, 3e, 6a, and 6b) thus facilitating high resolution typing of U. urealyticum. Inclusion of the reference strains for serovars 1, 3, 6, and 8 in the mba typing scheme showed that the results of this analysis are broadly consistent with currently accepted serotyping. In addition a ure gene fragment from nine of the clinical isolates was amplified and sequenced. Comparisons of the sequences clearly distinguished the two biovars of U. urealyticum; however this fragment was invariant within the parvo biovar. This study has shown that the sequence of the mba can reveal the fine details of the relationships between U. urealyticum isolates and also supports the significant evolutionary gap between the two biovars.
Resumo:
Amongst the most prominent uses of Twitter at present is its role in the discussion of widely televised events: Twitter’s own statistics for 2011, for example, list major entertainment spectacles (the MTV Music Awards, the BET Awards) and sports matches (the UEFA Champions League final, the FIFA Women’s World Cup final) amongst the events generating the most tweets per second during the year (Twitter, 2011). User activities during such televised events constitute a specific, unique category of Twitter use, which differs clearly from the other major events which generate a high rate of tweets per second (such as crises and breaking news, from the Japanese earthquake and tsunami to the death of Steve Jobs), as preliminary research has shown. During such major media events, by contrast, Twitter is used most predominantly as a technology of fandom instead: it serves in the first place as a backchannel to television and other streaming audiovisual media, enabling users offer their own running commentary on the universally shared media text of the event broadcast as it unfolds live. Centrally, this communion of fans around the shared text is facilitated by the use of Twitter hashtags – unifying textual markers which are now often promoted to prospective audiences by the broadcasters well in advance of the live event itself. This paper examines the use of Twitter as a technology for the expression of shared fandom in the context of a major, internationally televised annual media event: the Eurovision Song Contest. It constitutes a highly publicised, highly choreographed media spectacle whose eventual outcomes are unknown ahead of time and attracts a diverse international audience. Our analysis draws on comprehensive datasets for the ‘official’ event hashtags, #eurovision, #esc, and #sbseurovision. Using innovative methods which combine qualitative and quantitative approaches to the analysis of Twitter datasets containing several hundreds of thousands, we examine overall patterns of participation to discover how audiences express their fandom throughout the event. Minute-by-minute tracking of Twitter activity during the live broadcasts enables us to identify the most resonant moments during each event; we also examine the networks of interaction between participants to detect thematically or geographically determined clusters of interaction, and to identify the most visible and influential participants in each network. Such analysis is able to provide a unique insight into the use of Twitter as a technology for fandom and for what in cultural studies research is called ‘audiencing’: the public performance of belonging to the distributed audience for a shared media event. Our work thus contributes to the examination of fandom practices led by Henry Jenkins (2006) and other scholars, and points to Twitter as an important new medium facilitating the connection and communion of such fans.
Resumo:
Distributed space-time coding (DSTC) exploits the concept of cooperative diversity and space-time coding to offer a powerful bandwidth efficient solution with improved diversity. In this paper, we evaluate the performance of DSTC with slotted amplify-and-forward protocol (SAF). Relay nodes between the source and the destination nodes are grouped into two relay clusters based on their respective locations and these relay clusters cooperate to transmit the space-time coded signal to the destination node in different time frames. We further extend the proposed Slotted-DSTC to Slotted DSTC with redundant code (Slotted-DSTC-R) protocol where the relay nodes in both relay clusters forward the same space-time coded signal to the destination node to achieve a higher diversity order.
Resumo:
In this paper, we propose a novel relay ordering and scheduling strategy for the sequential slotted amplify-and-forward (SAF) protocol and evaluate its performance in terms of diversity-multiplexing trade-off (DMT). The relays between the source and destination are grouped into two relay clusters based on their respective locations. The proposed strategy achieves partial relay isolation and decreases the decoding complexity at the destination. We show that the DMT upper bound of sequential-SAF with the proposed strategy outperforms other amplify and forward protocols and is more practical compared to the relay isolation assumption made in the original paper [1]. Simulation result shows that the sequential-SAF protocol with the proposed strategy has better outage performance compared to the existing AF and non-cooperative protocols in high SNR regime.
Resumo:
This systematic mixed studies review aimed at synthesizing evidence from studies related to the influences on the work participation of people with refugee status (PWRS). The review focused on the role of proximal socio-structural barriers on work participation by PWRS while foregrounding related distal, intermediate, proximal, and meta-systemic influences. For the systematic search of the literature, we focused on databases that addressed work, well-being, and social policy in refugee populations, including, Medline, CINAHL, PsycInfo, Web of Science, Scopus, and Sociological Abstracts. Of the studies reviewed, 16 of 39 met the inclusion criteria and were retained for the final analysis. We performed a narrative synthesis of the evidence on barriers to work participation by PWRS, interlinking clusters of barriers potent to their effects on work participation. Findings from the narrative synthesis suggest that proximal factors, those at point of entry to the labor market, influence work participation more directly than distal or intermediate factors. Distal and intermediate factors achieve their effects on work participation by PWRS primarily through meta-systemic interlinkages, including host-country documentation and refugee administration provisions.
Resumo:
Background Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar expression levels across a subset of conditions. This paper proposes a seed-based algorithm that identifies coherent genes in an exhaustive, but efficient manner. Methods In order to find the biclusters in a gene expression dataset, we exhaustively select combinations of genes and conditions as seeds to create candidate bicluster tables. The tables have two columns: (a) a gene set, and (b) the conditions on which the gene set have dissimilar expression levels to the seed. First, the genes with less than the maximum number of dissimilar conditions are identified and a table of these genes is created. Second, the rows that have the same dissimilar conditions are grouped together. Third, the table is sorted in ascending order based on the number of dissimilar conditions. Finally, beginning with the first row of the table, a test is run repeatedly to determine whether the cardinality of the gene set in the row is greater than the minimum threshold number of genes in a bicluster. If so, a bicluster is outputted and the corresponding row is removed from the table. Repeating this process, all biclusters in the table are systematically identified until the table becomes empty. Conclusions This paper presents a novel biclustering algorithm for the identification of additive biclusters. Since it involves exhaustively testing combinations of genes and conditions, the additive biclusters can be found more readily.