206 resultados para Formation académique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Otitis media (OM) (a middle ear infection) is a common childhood illness that can leave some children with permanent hearing loss. OM can arise following infection with a variety of different pathogens, including a coinfection with influenza A virus (IAV) and Streptococcus pneumoniae (the pneumococcus). We and others have demonstrated that coinfection with IAV facilitates the replication of pneumococci in the middle ear. Specifically, we used a mouse model of OM to show that IAV facilitates the outgrowth of S. pneumoniae in the middle ear by inducing middle ear inflammation. Here, we seek to understand how the host inflammatory response facilitates bacterial outgrowth in the middle ear. Using B cell-deficient infant mice, we show that antibodies play a crucial role in facilitating pneumococcal replication. We subsequently show that this is due to antibody-dependent neutrophil extracellular trap (NET) formation in the middle ear, which, instead of clearing the infection, allows the bacteria to replicate. We further demonstrate the importance of these NETs as a potential therapeutic target through the transtympanic administration of a DNase, which effectively reduces the bacterial load in the middle ear. Taken together, these data provide novel insight into how pneumococci are able to replicate in the middle ear cavity and induce disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical calculations of the C3HO potential surface at the CCSD(T)/aug-cc-pVDu/B3LYP/6-31G* level indicate that the three radicals HCCCO, CCCHO, and (cyclo-C3H)=O are stable, with HCCCO being the most stable of the three. A fourth isomer, CCHCO, is unstable with respect to cyclization to (cyclo-C3H)=O. Two isomers have been prepared by neutralization of charged precursors, formed as follows: (i) HCCCO, by HC drop C-C(O)-O+(H)(Me) --> HC3O+ + MeOH, and (ii) C2CHO, by (a) Me3SiC drop C-CHO + HO- --> C- drop C-CHO + Me3SiOH and (b) C- drop C-CH(OH)-C drop CH --> C- drop C-CHO + C2H2. A comparison of the CR and -NR+ spectra of -C2CHO indicate that C2CHO is (partially) rearranging to an isomer that shows significant formation of CO.(+) in the -NR+ spectrum of the anion. Ab initio calculations indicate that HCCCO is the product of the isomerism and that a proportion of these isomerized neutrals dissociate to CO and C2H. The neutral HCCCO may be formed by (i) synchronous rearrangement of C2CHO and/or (ii) stepwise rearrangement of C2CHO through (cyclo-C3H)=O. The second of these processes should have the higher rate, as it has the lower barrier in the rate-determining step and the higher Arrhenius pre-exponential A factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a determination of Delta(f)H(298)(HOO) based upon a negative. ion thermodynamic cycle. The photoelectron spectra of HOO- and DOO- were used to measure the molecular electron affinities (EAs). In a separate experiment, a tandem flowing afterglow-selected ion flow tube (FA-SIFT) was used to measure the forward and reverse rate constants for HOO- + HCdropCH reversible arrow HOOH + HCdropC(-) at 298 K, which gave a value for Delta(acid)H(298)(HOO-H). The experiments yield the following values: EA(HOO) = 1.078 +/- 0.006 eV; T-0((X) over tilde HOO - (A) over tilde HOO) = 0.872 +/- 0.007 eV; EA(DOO) = 1.077 +/- 0.005 eV; T-0((X) over tilde DOO - (A) over tilde DOO) = 0.874 +/- 0.007 eV; Delta(acid)G(298)(HOO-H) = 369.5 +/- 0.4 kcal mol(-1); and Delta(acid)H(298)(HOO-H) = 376.5 +/- 0.4 kcal mol(-1). The acidity/EA thermochemical cycle yields values for the bond enthalpies of DH298(HOO-H) = 87.8 +/- 0.5 kcal mol(-1) and Do(HOO-H) = 86.6 +/- 0.5 kcal mol(-1). We recommend the following values for the heats of formation of the hydroperoxyl radical: Delta(f)H(298)(HOO) = 3.2 +/- 0.5 kcal mol(-1) and Delta(f)H(0)(HOO) = 3.9 +/- 0.5 kcal mol(-1); we recommend that these values supersede those listed in the current NIST-JANAF thermochemical tables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consideration of theoretical calculations \[E3LYP/aug-cc-pVDZ//B3LYP/6-31G(d)\] of the structures of ten C7H2 neutral isomers and the nine corresponding C7H2 radical anions have led us to synthesize four stable C7H2 radical anions in the ion source of our ZAB 2HF mass spectrometer, and to convert these to C7H2 neutrals. The four radical anion isomers prepared were (i) \[(HC equivalent to C)(2)C=C=C\](-.) \[from the reaction between (HC equivalent to C)(3)COCH3 and HO- \], (ii) \[HC=C=C=C=C=C=CH\](-.) \[from the reaction between HC equivalent to C-C equivalent to C-CD(OH)-C equivalent to CH and HO-\], (iii) \[C=C=C=C=C=C=CH2\](-.) \[from the reaction between DC equivalent to C-C equivalent to C-C equivalent to C-CH2OCH2CH3 and HO-\], and (iv) \[C equivalent to C-CH2-C equivalent to C-C equivalent to C\](-.) \[from the bis desilylation reaction of (CH3)(3)Si-C equivalent to C-CH2-C equivalent to C-C equivalent to C-Si (CH3)(3)With SF6-.\]. The four anions were further characterized by their collisional activation (negative ion) and charge reversal (CR, positive ion) mass spectra. The anions were converted into their corresponding neutrals by charge stripping, and the correspondence between the charge reversal (CR) and neutralization reionization (-NR+) mass spectra of each anion is taken as evidence that within the time frame of the -NR+ experiment (some 10(-6) s), each neutral is stable and undergoes no major rearrangement or interconversion to a more stable isomer. Theory and experiment are in accord for these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consideration of theoretical calculations [B3LYP/aug-cc-pVDZ//B3LYP/6-31G(d)] of the structures of ten C7H2 neutral isomers and the nine corresponding C7H2 radical anions have led us to synthesize four stable C7H2 radical anions in the ion source of our ZAB 2HF mass spectrometer, and to convert these to C7H2 neutrals. The four radical anion isomers prepared were (i) [(HC≡C)2C=C=C]-̇ [from the reaction between (HC≡C)3COCH3 and HO- ], (ii) [HC=C=C=C=C=C=CH]-̇ [from the reaction between HC≡C-C≡C- CD(OH)-C≡CH and HO-], (iii) [C=C=C=C=C=C=CH2]-̇ [from the reaction between DC≡C-C≡C- C≡C-CH2OCH2CH3 and HO-], and (iv) [C≡C-CH2-C≡C-C≡C]-̇ [from the bis desilylation reaction of (CH3)3Si-C≡C-CH2-C≡C-C≡C-Si (CH3)3 with SF6 -̇]. The four anions were further characterized by their collisional activation (negative ion) and charge reversal (CR, positive ion) mass spectra. The anions were converted into their corresponding neutrals by charge stripping, and the correspondence between the charge reversal (CR) and neutralization reionization (-NR+) mass spectra of each anion is taken as evidence that within the time frame of the -NR+ experiment (some 10-6 s), each neutral is stable and undergoes no major rearrangement or interconversion to a more stable isomer. Theory and experiment are in accord for these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer metastasis to the bone occurs frequently, causing numerous complications including severe pain, fracture, hypercalcemia, and paralysis. Despite its prevalence and severity, few effective therapies exist. To address this, we examined whether the heat shock protein 90 (Hsp90) inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), would be efficacious in inhibiting breast cancer metastasis to bone. Utilizing the human breast cancer subline, MDA-MB-231SA, previously in vivo selected for its enhanced ability to generate osteolytic bone lesions, we determined that 17-AAG potently inhibited its in vitro proliferation and migration. Moreover, 17-AAG significantly reduced MDA-MB-231SA tumor growth in the mammary-fat pad of nude mice. Despite these findings, 17-AAG enhanced the incidence of bone metastasis and osteolytic lesions following intracardiac inoculation in the nude mouse. Consistent with these findings, 17-AAG enhanced osteoclast formation 2- to 4-fold in mouse bone marrow/osteoblast cocultures, receptor activator of nuclear factor κB ligand (BANKL)-stimulated bone marrow, and RAW264.7 cell models of in vitro osteoclastogenesis. Moreover, the drug enhanced osteoclastogenesis in human cord blood progenitor cells, demonstrating that its effects were not limited to mouse models. In addition to 17-AAG, other Hsp90 inhibitors, such as radicicol and herbimycin A, also enhanced osteoclastogenesis. A pro-osteolytic action of 17-AAG independent of tumor presence was also determined in vivo, in which 17-AAG-treated tumor-naive mice had reduced trabecular bone volume with an associated increase in osteoclast number. Thus, HSP90 inhibitors can stimulate osteoclast formation, which may underlie the increased incidence of osteolysis and skeletal tumor incidence causedby 17-AAG in vivo. These data suggest an important contraindication to the Hsp90 targeted cancer therapy currently undergoing clinical trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a modified version of a lecture which describes the synthesis, structure and reactivity of some neutral molecules of stellar significance. The neutrals are formed in the collision cell of a mass spectrometer following vertical Franck-Condon one electron oxidation of anions of known bond connectivity. Neutrals are characterised by conversion to positive ions and by extensive theoretical studies at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory. Four systems are considered in detail, viz (i) the formation of linear C-4 and its conversion to the rhombus C-4, (ii) linear C-5 and the atom scrambling of this system when energised, (iii) the stable cumulene oxide CCCCCO, and (iv) the elusive species O2C-CO. This paper is not intended to be a review of interstellar chemistry: examples are selected from our own work in this area. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the use of the hydrogen bond acceptor properties of some phosphorus-containing functional groups for the assembly of a series of [2]rotaxanes. Phosphinamides, and the homologous thio– and selenophosphinamides, act as hydrogen bond acceptors that, in conjunction with an appropriately positioned amide group on the thread, direct the assembly of amide-based macrocycles around the axle to form rotaxanes in up to 60% yields. Employing solely phosphorus-based functional groups as the hydrogen bond accepting groups on the thread, a bis(phosphinamide) template and a phosphine oxide-phosphinamide template afforded the corresponding rotaxanes in 18 and 15 % yields, respectively. X-Ray crystallography of the rotaxanes shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and various hydrogen bond accepting groups on the thread, including rare examples of amide-to-phosphonamide, -thiophosphinamide and -selenophosphinamide groups. With a phosphine oxide-phosphinamide thread, the solid state structure of the rotaxane is remarkable, featuring no direct intercomponent hydrogen bonds but rather a hydrogen bond network involving water molecules that bridge the H-bonding groups of the macrocycle and thread through bifurcated hydrogen bonds. The incorporation of phosphorus-based functional groups into rotaxanes may prove useful for the development of molecular shuttles in which the macrocycle can be used to hinder or expose binding ligating sites for metal-based catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmonic gold nano-assemblies that self-assemble with the aid of linking molecules or polymers have the potential to yield controlled hierarchies of morphologies and consequently result in materials with tailored optical (e.g. localized surface plasmon resonances (LSPR)) and spectroscopic properties (e.g. surface enhanced Raman scattering (SERS)). Molecular linkers that are structurally well-defined are promising for forming hybrid nano-assemblies which are stable in aqueous solution and are increasingly finding application in nanomedicine. Despite much ongoing research in this field, the precise role of molecular linkers in governing the morphology and properties of the hybrid nano-assemblies remains unclear. Previously we have demonstrated that branched linkers, such as hyperbranched polymers, with specific anchoring end groups can be successfully employed to form assemblies of gold NPs demonstrating near-infrared SPRs and intense SERS scattering. We herein introduce a tailored polymer as a versatile molecular linker, capable of manipulating nano-assembly morphologies and hot-spot density. In addition, this report explores the role of the polymeric linker architecture, specifically the degree of branching of the tailored polymer in determining the formation, morphology and properties of the hybrid nano-assemblies. The degree of branching of the linker polymer, in addition to the concentration and number of anchoring groups, is observed to strongly influence the self-assembly process. The assembly morphology shifts primarily from 1D-like chains to 2D plates and finally to 3D-like globular structures, with increase in degree of branching. Insights have been gained into how the morphology influences the SERS performance of these nano-assemblies with respect to hot-spot density. These findings supplement the understanding of the morphology determining nano-assembly formation and pave the way for the possible application of these nano-assemblies as SERS bio-sensors for medical diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SPARC (secreted protein acidic and rich in cysteine)/ osteonectin/BM-40 is a matricellular protein implicated in development, cell transformation and tumorigenesis. We have examined the role of SPARC in cell transformation induced chemically with 7,12-dimethylbenz[a]anthracene (DMBA) and 12- tetradecanoylphorbol-13-acetate (TPA) in embryonic fibroblasts and in the skin of mice. Embryonic fibroblasts from SPARCnull mice showed increases in cell proliferation, enhanced sensitivity to DMBA and a higher number of DMBA/TPA-induced transformation foci. The number of DMBA-DNA adducts was 9 times higher in SPARCnull fibroblasts and their stability was lower than wild-type fibroblasts, consistent with a reduction in excision repair cross-complementing 1 the nucleotide excision repair enzyme in these cells. The SPARCnull mice showed an increase in both the speed and number of papillomas forming after topical administration of DMBA/TPA to the skin. These papillomas showed reduced growth and reduced progression to a more malignant phenotype, indicating that the effect of SPARC on tumorigenesis depends upon the transformation stage and/or tissue context. These data reinforce a growing number of observations in which SPARC has shown opposite effects on different tumor types/stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first step in bone healing is forming a blood clot at injured bones. During bone implantation, biomaterials unavoidably come into direct contact with blood, leading to a blood clot formation on its surface prior to bone regeneration. Despite both situations being similar in forming a blood clot at the defect site, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Dental implantology has long demonstrated that the fibrin structure and cellular content of a peri-implant clot can greatly affect osteoconduction and de novo bone formation on implant surfaces. This paper reviews the formation of a blood clot during bone healing in related to the use of platelet-rich plasma (PRP) gels. It is implicated that PRP gels are dramatically altered from a normal clot in healing, resulting conflicting effect on bone regeneration. These results indicate that the effect of clots on bone regeneration depends on how the clots are formed. Factors that influence blood clot structure and properties in related to bone healing are also highlighted. Such knowledge is essential for developing strategies to optimally control blood clot formation, which ultimately alter the healing microenvironment of bone. Of particular interest are modification of surface chemistry of biomaterials, which displays functional groups at varied composition for the purpose of tailoring blood coagulation activation, resultant clot fibrin architecture, rigidity, susceptibility to lysis, and growth factor release. This opens new scope of in situ blood clot modification as a promising approach in accelerating and controlling bone regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene films with different structures were catalytically grown on the silicon substrate pre-deposited with a gold film by hot filament chemical vapor deposition under different conditions, where methane, hydrogen and nitrogen were used as the reactive gases. The morphological and compositional properties of graphene films were studied using advanced instruments including field emission scanning electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the structure and composition of graphene films are changed with the variation of the growth conditions. According to the theory related to thermodynamics, the formation of graphene films was theoretically analyzed and the results indicate that the formation of graphene films is related to the fast incorporation and precipitation of carbon. The electron field emission (EFE) properties of graphene films were studied in a high vacuum system of ∼10-6 Pa and the EFE results show that the turn-on field is in a range of 5.2-5.64 V μm-1 and the maximum current density is about 63 μ A cm-2 at the field of 7.7 V μm-1. These results are important to control the structure of graphene films and have the potential applications of graphene in various nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge and chemical composition of ambient particles in an urban environment were determined using a Neutral Particle and Air Ion Spectrometer and an Aerodyne compact Time-Of-Flight Aerosol Mass Spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulphate, which were not observed in the organic fraction. Comparison of days with and without particle formation events revealed that ammonium and sulphate were the dominant species on particle formation days while high concentrations of biomass burning OA inhibited particle growth. Analyses of the degree of particle neutralisation lead us to conclude that an excess of ammonium enabled particle formation and growth. In addition, the large ion concentration increased sharply during particle growth, suggesting that during nucleation the neutral gaseous species ammonia and sulphuric acid react to form ammonium and sulphate ions. Overall, we conclude that the mechanism of particle formation and growth involved ammonia and sulphuric acid, with limited input from organics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controlled growth of ultra-small Ge/Si quantum dot (QD) nuclei (≈1 nm) suitable for the synthesis of uniform nanopatterns with high surface coverage, is simulated using atom-only and size non-uniform cluster fluxes. It is found that seed nuclei of more uniform sizes are formed when clusters of non-uniform size are deposited. This counter-intuitive result is explained via adatom-nanocluster interactions on Si(100) surfaces. Our results are supported by experimental data on the geometric characteristics of QD patterns synthesized by nanocluster deposition. This is followed by a description of the role of plasmas as non-uniform cluster sources and the impact on surface dynamics. The technique challenges conventional growth modes and is promising for deterministic synthesis of nanodot arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cluster ions and charged and neutral nanoparticle concentrations were monitored using a neutral cluster and air ion spectrometer (NAIS) over a period of one year in Brisbane, Australia. The study yielded 242 complete days of usable data, of which particle formation events were observed on 101 days. Small, intermediate and large ion concentrations were evaluated in real time. In the diurnal cycle, small ion concentration was highest during the second half of the night while large ion concentrations were a maximum during the day. The small ion concentration showed a decrease when the large ion concentration increased. Particle formation was generally followed by a peak in the intermediate ion concentration. The rate of increase of intermediate ions was used as the criteria for identifying particle formation events. Such events were followed by a period of growth to larger sizes and usually occurred between 8 am and 2 pm. Particle formation events were found to be related to the wind direction. The gaseous precursors for the production of secondary particles in the urban environment of Brisbane have been shown to be ammonia and sulfuric acid. During these events, the nanoparticle number concentrations in the size range 1.6 to 42 nm, which were normally lower than 1x104 cm-3, often exceeded 5x104 cm-3 with occasional values over 1x105 cm-3. Cluster ions generally occurred in number concentrations between 300 and 600 cm-3 but decreased significantly to about 200 cm-3 during particle formation events. This was accompanied by an increase in the large ion concentration. We calculated the fraction of nanoparticles that were charged and investigated the occurrence of possible overcharging during particle formation events. Overcharging is defined as the condition where the charged fraction of particles is higher than in charge equilibrium. This can occur when cluster ions attach to neutral particles in the atmosphere, giving rise to larger concentrations of charged particles in the short term. Ion-induced nucleation is one of the mechanisms of particle formation in the atmosphere, and overcharging has previously been considered as an indicator of this process. The possible role of ions in particle formation was investigated.