430 resultados para Ferrar, Nicholas, 1592-1637.
Resumo:
Germline mutations within the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene and one of its targets, the cyclin dependent kinase 4 (CDK4) gene, have been identified in a proportion of melanoma kindreds. In the case of CDK4, only one specific mutation, resulting in the substitution of a cysteine for an arginine at codon 24 (R24C), has been found to be associated with melanoma. We have previously reported the identification of germline CDKN2A mutations in 7/18 Australian melanoma kindreds and the absence of the R24C CDK4 mutation in 21 families lacking evidence of a CDKN2A mutation. The current study represents an expansion of these efforts and includes a total of 48 melanoma families from Australia. All of these families have now been screened for mutations within CDKN2A and CDK4, as well as for mutations within the CDKN2A homolog and 9p21 neighbor, the CDKN2B gene, and the alternative exon 1 (E1beta) of CDKN2A. Families lacking CDKN2A mutations, but positive for a polymorphism(s) within this gene, were further evaluated to determine if their disease was associated with transcriptional silencing of one CDKN2A allele. Overall, CDKN2A mutations were detected in 3/30 (10%) of the new kindreds. Two of these mutations have been observed previously: a 24 bp duplication at the 5' end of the gene and a G to C transversion in exon 2 resulting in an M531 substitution. A novel G to A transition in exon 2, resulting in a D108N substitution was also detected. Combined with our previous findings, we have now detected germline CDKN2A mutations in 10/48 (21%) of our melanoma kindreds. In none of the 'CDKN2A-negative' families was melanoma found to segregate with either an untranscribed CDKN2A allele, an R24C CDK4 mutation, a CDKN2B mutation, or an E1beta mutation. The last three observations suggest that these other cell cycle control genes (or alternative gene products) are either not involved at all, or to any great extent, in melanoma predisposition.
Resumo:
CDKN2A, the gene encoding the cell-cycle inhibitor p16CDKN2A, was first identified in 1994. Since then, somatic mutations have been observed in many cancers and germline alterations have been found in kindreds with familial atypical multiple mole/melanoma (FAMMM), also known as atypical mole syndrome. In this review we tabulate the known mutations in this gene and discuss specific aspects, particularly with respect to germline mutations and cancer predisposition.
Resumo:
The CDKN2A gene encodes p16 (CDKN2A), a cell-cycle inhibitor protein which prevents inappropriate cell cycling and, hence, proliferation. Germ-line mutations in CDKN2A predispose to the familial atypical multiple-mole melanoma (FAMMM) syndrome but also have been seen in rare families in which only 1 or 2 individuals are affected by cutaneous malignant melanoma (CMM). We therefore sequenced exons 1alpha and 2 of CDKN2A using lymphocyte DNA isolated from index cases from 67 families with cancers at multiple sites, where the patterns of cancer did not resemble those attributable to known genes such as hMLH1, hMLH2, BRCA1, BRCA2, TP53 or other cancer susceptibility genes. We found one mutation, a mis-sense mutation resulting in a methionine to isoleucine change at codon 53 (M531) of exon 2. The individual tested had developed 2 CMMs but had no dysplastic nevi and lacked a family history of dysplastic nevi or CMM. Other family members had been diagnosed with oral cancer (2 persons), bladder cancer (1 person) and possibly gall-bladder cancer. While this mutation has been reported in Australian and North American melanoma kindreds, we did not observe it in 618 chromosomes from Scottish and Canadian controls. Functional studies revealed that the CDKN2A variant carrying the M531 change was unable to bind effectively to CDK4, showing that this mutation is of pathological significance. Our results have confirmed that CDKN2A mutations are not limited to FAMMM kindreds but also demonstrate that multi-site cancer families without melanoma are very unlikely to contain CDKN2A mutations.
Resumo:
Germ-line mutations in CDKN2A have been shown to predispose to cutaneous malignant melanoma. We have identified 2 new melanoma kindreds which carry a duplication of a 24bp repeat present in the 5' region of CDKN2A previously identified in melanoma families from Australia and the United States. This mutation has now been reported in 5 melanoma families from 3 continents: Europe, North America, and Australasia. The M53I mutation in exon 2 of CDKN2A has also been documented in 5 melanoma families from Australia and North America. The aim of this study was to determine whether the occurrence of the mutations in these families from geographically diverse populations represented mutation hotspots within CDKN2A or were due to common ancestors. Haplotypes of 11 microsatellite markers flanking CDKN2A were constructed in 5 families carrying the M53I mutation and 5 families carrying the 24bp duplication. There were some differences in the segregating haplotypes due primarily to recombinations and mutations within the short tandem-repeat markers; however, the data provide evidence to indicate that there were at least 3 independent 24bp duplication events and possibly only 1 original M53I mutation. This is the first study to date which indicates common founders in melanoma families from different continents.
Resumo:
The majority of small-cell lung cancers (SCLCs) express p16 but not pRb. Given our previous study showing loss of pRb in Merkel cell carcinoma (MCC)/neuroendocrine carcinoma of the skin and the clinicopathological similarities between SCLC and MCC, we wished to determine if this was also the case in MCC. Twenty-nine MCC specimens from 23 patients were examined for deletions at 10 loci on 9p and 1 on 9q. No loss of heterozygosity (LOH) was seen in 9 patients including 2 for which tumour and cell line DNAs were examined. Four patients had LOH for all informative loci on 9p. Ten tumours showed more limited regions of loss on 9p, and from these 2 common regions of deletion were determined. Half of all informative cases had LOH at D9S168, the most telomeric marker examined, and 3 specimens showed loss of only D9S168. A second region (IFNA-D9S126) showed LOH in 10 (44%) cases, and case MCC26 showed LOH for only D9S126, implicating genes centromeric of the CDKN2A locus. No mutations in the coding regions of p16 were seen in 7 cell lines tested, and reactivity to anti-p16 antibody was seen in all 11 tumour specimens examined and in 6 of 7 cell lines from 6 patients. Furthermore, all cell lines examined reacted with anti-p14(ARF) antibody. These results suggest that neither transcript of the CDKN2A locus is the target of deletions on 9p in MCC and imply the existence of tumour-suppressor genes mapping both centromeric and telomeric of this locus.
Resumo:
Approximately 50% of all melanoma families worldwide show linkage to 9p21-22, but only about half of these have been shown to contain germ line CDKN2A mutations. It has been hypothesized that a proportion of these families carry mutations in the noncoding regions of CDKN2A. Several Canadian families have been reported to carry a mutation in the 5' UTR, at position -34 relative to the start site, which gives rise to a novel AUG translation initiation codon that markedly decreases translation from the wild-type AUG (Liu et al., 1999). Haplotype sharing in these Canadian families suggested that this mutation is of British origin. We sequenced 1,327 base pairs (bp) of CDKN2A, making up 1,116 bp of the 5' UTR and promoter, all of exon 1, and 61 bp of intron 1, in at least one melanoma case from 110 Australian families with three or more affected members known not to carry mutations within the p16 coding region. In addition, 431 bp upstream of the start codon was sequenced in an additional 253 affected probands from two-case melanoma families for which the CDKN2A mutation status was unknown. Several known polymorphisms at positions -33, -191, -493, and -735 were detected, in addition to four novel variants at positions 120, -252, -347, and -981 relative to the start codon. One of the probands from a two-case family was found to have the previously reported Q50R mutation. No family member was found to carry the mutation at position -34 or any other disease-associated mutation. For further investigation of noncoding CDKN2A mutations that may affect transcription, allele-specific expression analysis was carried out in 31 of the families with at least three affected members who showed either complete or "indeterminate" 9p haplotype sharing without CDKN2A exonic mutations. Reverse transcription polymerase chain reaction and automated sequencing showed expression of both CDKN2A alleles in all family members tested. The lack of CDKN2A promoter mutations and the absence of transcriptional silencing in the germ line of this cohort of families suggest that mutations in the promoter and 5' UTR play a very limited role in melanoma predisposition.
Resumo:
Cytogenetic and loss of heterozygosity (LOH) studies have long indicated the presence of a tumor suppressor gene (TSG) on 9p involved in the development of melanoma. Although LOH at 9p has been reported in approximately 60% of melanoma tumors, only 5-10% of these tumors have been shown to carry CDKN2A mutations, raising the possibility that another TSG involved in melanoma maps to chromosome 9p. To investigate this possibility, a panel of 37 melanomas derived from 35 individuals was analyzed for CDKN2A mutations by single-strand conformation polymorphism analysis and sequencing. The melanoma samples were then typed for 15 markers that map to 9p13-24 to investigate LOH trends in this region. In those tumors demonstrating retention of heterozygosity at markers flanking CDKN2A and LOH on one or both sides of the gene, multiplex microsatellite PCR was performed to rule out homozygous deletion of the region encompassing CDKN2A. CDKN2A mutations were found in tumors from 5 patients [5 (14%) of 35], 4 of which demonstrated LOH across the entire region examined. The remaining tumor with no observed LOH carried two point mutations, one on each allele. Although LOH was identified at one or more markers in 22 (59%) of 37 melanoma tumors corresponding to 20 (57%) of 35 individuals, only 11 tumors from 9 individuals [9 (26%) of 35] demonstrated LOH at D9S942 and D9S1748 the markers closest to CDKN2A. Of the remaining 11 tumors with LOH 9 demonstrated LOH at two or more contiguous markers either centromeric and/or telomeric to CDKN2A while retaining heterozygosity at several markers adjacent to CDKN2A. Multiplex PCR revealed one tumor carried a homozygous deletion extending from D9S1748 to the IFN-alpha locus. In the remaining eight tumors, multiplex PCR demonstrated that the observed heterozygosity was not attributable to homozygous deletion and stromal contamination at D9S1748, D9S942, or D9S974, as measured by comparative amplification strengths, which indicates that retention of heterozygosity with flanking LOH does not always indicate a homozygous deletion. This report supports the conclusions of previous studies that a least two TSGs involved in melanoma development in addition to CDKN2A may reside on chromosome 9p.
Resumo:
Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-1/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines.
Resumo:
We have used microarray gene expression profiling and machine learning to predict the presence of BRAF mutations in a panel of 61 melanoma cell lines. The BRAF gene was found to be mutated in 42 samples (69%) and intragenic mutations of the NRAS gene were detected in seven samples (11%). No cell line carried mutations of both genes. Using support vector machines, we have built a classifier that differentiates between melanoma cell lines based on BRAF mutation status. As few as 83 genes are able to discriminate between BRAF mutant and BRAF wild-type samples with clear separation observed using hierarchical clustering. Multidimensional scaling was used to visualize the relationship between a BRAF mutation signature and that of a generalized mitogen-activated protein kinase (MAPK) activation (either BRAF or NRAS mutation) in the context of the discriminating gene list. We observed that samples carrying NRAS mutations lie somewhere between those with or without BRAF mutations. These observations suggest that there are gene-specific mutation signals in addition to a common MAPK activation that result from the pleiotropic effects of either BRAF or NRAS on other signaling pathways, leading to measurably different transcriptional changes.
Resumo:
Loss of the short arm of chromosome 1 is frequently observed in many tumor types, including melanoma. We recently localized a third melanoma susceptibility locus to chromosome band 1p22. Critical recombinants in linked families localized the gene to a 15-Mb region between D1S430 and D1S2664. To map the locus more finely we have performed studies to assess allelic loss across the region in a panel of melanomas from 1p22-linked families, sporadic melanomas, and melanoma cell lines. Eighty percent of familial melanomas exhibited loss of heterozygosity (LOH) within the region, with a smallest region of overlapping deletions (SRO) of 9 Mb between D1S207 and D1S435. This high frequency of LOH makes it very likely that the susceptibility locus is a tumor suppressor. In sporadic tumors, four SROs were defined. SRO1 and SRO2 map within the critical recombinant and familial tumor region, indicating that one or the other is likely to harbor the susceptibility gene. However, SRO3 may also be significant because it overlaps with the markers with the highest 2-point LOD score (D1S2776), part of the linkage recombinant region, and the critical region defined in mesothelioma. The candidate genes PRKCL2 and GTF2B, within SRO2, and TGFBR3, CDC7, and EVI5, in a broad region encompassing SRO3, were screened in 1p22-linked melanoma kindreds, but no coding mutations were detected. Allelic loss in melanoma cell lines was significantly less frequent than in fresh tumors, indicating that this gene may not be involved late in progression, such as in overriding cellular senescence, necessary for the propagation of melanoma cells in culture.
Resumo:
Endocytosis is the process by which cells internalise molecules including nutrient proteins from the extracellular media. In one form, macropinocytosis, the membrane at the cell surface ruffles and folds over to give rise to an internalised vesicle. Negatively charged phospholipids within the membrane called phosphoinositides then undergo a series of transformations that are critical for the correct trafficking of the vesicle within the cell, and which are often pirated by pathogens such as Salmonella. Advanced fluorescent video microscopy imaging now allows the detailed observation and quantification of these events in live cells over time. Here we use these observations as a basis for building differential equation models of the transformations. An initial investigation of these interactions was modelled with reaction rates proportional to the sum of the concentrations of the individual constituents. A first order linear system for the concentrations results. The structure of the system enables analytical expressions to be obtained and the problem becomes one of determining the reaction rates which generate the observed data plots. We present results with reaction rates which capture the general behaviour of the reactions so that we now have a complete mathematical model of phosphoinositide transformations that fits the experimental observations. Some excellent fits are obtained with modulated exponential functions; however, these are not solutions of the linear system. The question arises as to how the model may be modified to obtain a system whose solution provides a more accurate fit.
Resumo:
With the advent of live cell imaging microscopy, new types of mathematical analyses and measurements are possible. Many of the real-time movies of cellular processes are visually very compelling, but elementary analysis of changes over time of quantities such as surface area and volume often show that there is more to the data than meets the eye. This unit outlines a geometric modeling methodology and applies it to tubulation of vesicles during endocytosis. Using these principles, it has been possible to build better qualitative and quantitative understandings of the systems observed, as well as to make predictions about quantities such as ligand or solute concentration, vesicle pH, and membrane trafficked. The purpose is to outline a methodology for analyzing real-time movies that has led to a greater appreciation of the changes that are occurring during the time frame of the real-time video microscopy and how additional quantitative measurements allow for further hypotheses to be generated and tested.
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.
Resumo:
It was reported that the manuscript of Crash was returned to the publisher with a note reading ‘The author is beyond psychiatric help’. Ballard took the lay diagnosis as proof of complete artistic success. Crash conflates the Freudian tropes of libido and thanatos, overlaying these onto the twentieth century erotic icon, the car. Beyond mere incompetent adolescent copulatory fumblings in the back seat of the parental sedan or the clichéd phallic locomotor of the mid-life Ferrari, Ballard engages the full potentialities of the automobile as the locus and sine qua non of a perverse, though functional erotic. ‘Autoeroticism’ is transformed into automotive, traumatic or surgical paraphilia, driving Helmut Newton’s insipid photo-essays of BDSM and orthopædics into an entirely new dimension, dancing precisely where (but more crucially, because) the ‘body is bruised to pleasure soul’. The serendipity of quotidian accidental collisions is supplanted, in pursuit of the fetishised object, by contrived (though not simulated) recreations of iconographic celebrity deaths. Penetration remains as a guiding trope of sexuality, but it is confounded by a perversity of focus. Such an obsessive pursuit of this autoerotic-as-reality necessitates the rejection of the law of human sexual regulation, requiring the re-interpretation of what constitutes sex itself by looking beyond or through conventional sexuality into Ballard’s paraphiliac and nightmarish consensual Other. This Other allows for (if not demands) the tangled wreckage of a sportscar to function as a transformative sexual agent, creating, of woman, a being of ‘free and perverse sexuality, releasing within its dying chromium and leaking engine-parts, all the deviant possibilities of her sex’.
Resumo:
The purpose of the present study was to compare the effects of cold water immersion (CWI) and active recovery (ACT) on resting limb blood flow, rectal temperature and repeated cycling performance in the heat. Ten subjects completed two testing sessions separated by 1 week; each trial consisted of an initial all-out 35-min exercise bout, one of two 15-min recovery interventions (randomised: CWI or ACT), followed by a 40-min passive recovery period before repeating the 35-min exercise bout. Performance was measured as the change in total work completed during the exercise bouts. Resting limb blood flow, heart rate, rectal temperature and blood lactate were recorded throughout the testing sessions. There was a significant decline in performance after ACT (mean (SD) −1.81% (1.05%)) compared with CWI where performance remained unchanged (0.10% (0.71%)). Rectal temperature was reduced after CWI (36.8°C (1.0°C)) compared with ACT (38.3°C (0.4°C)), as was blood flow to the arms (CWI 3.64 (1.47) ml/100 ml/min; ACT 16.85 (3.57) ml/100 ml/min) and legs (CW 4.83 (2.49) ml/100 ml/min; ACT 4.83 (2.49) ml/100 ml/min). Leg blood flow at the end of the second exercise bout was not different between the active (15.25 (4.33) ml/100 ml/min) and cold trials (14.99 (4.96) ml/100 ml/min), whereas rectal temperature (CWI 38.1°C (0.3°C); ACT 38.8°C (0.2°C)) and arm blood flow (CWI 20.55 (3.78) ml/100 ml/min; ACT 23.83 (5.32) ml/100 ml/min) remained depressed until the end of the cold trial. These findings indicate that CWI is an effective intervention for maintaining repeat cycling performance in the heat and this performance benefit is associated with alterations in core temperature and limb blood flow.