242 resultados para Feedback control systems
Resumo:
Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions.
Resumo:
Ship seakeeping operability refers to the quantification of motion performance in waves relative to mission requirements. This is used to make decisions about preferred vessel designs, but it can also be used as comprehensive assessment of the benefits of ship-motion-control systems. Traditionally, operability computation aggregates statistics of motion computed over over the envelope of likely environmental conditions in order to determine a coefficient in the range from 0 to 1 called operability. When used for assessment of motion-control systems, the increase of operability is taken as the key performance indicator. The operability coefficient is often given the interpretation of the percentage of time operable. This paper considers an alternative probabilistic approach to this traditional computation of operability. It characterises operability not as a number to which a frequency interpretation is attached, but as a hypothesis that a vessel will attain the desired performance in one mission considering the envelope of likely operational conditions. This enables the use of Bayesian theory to compute the probability of that this hypothesis is true conditional on data from simulations. Thus, the metric considered is the probability of operability. This formulation not only adheres to recent developments in reliability and risk analysis, but also allows incorporating into the analysis more accurate descriptions of ship-motion-control systems since the analysis is not limited to linear ship responses in the frequency domain. The paper also discusses an extension of the approach to the case of assessment of increased levels of autonomy for unmanned marine craft.
Resumo:
In this paper, the trajectory tracking control of an autonomous underwater vehicle (AUVs) in six-degrees-of-freedom (6-DOFs) is addressed. It is assumed that the system parameters are unknown and the vehicle is underactuated. An adaptive controller is proposed, based on Lyapunov׳s direct method and the back-stepping technique, which interestingly guarantees robustness against parameter uncertainties. The desired trajectory can be any sufficiently smooth bounded curve parameterized by time even if consist of straight line. In contrast with the majority of research in this field, the likelihood of actuators׳ saturation is considered and another adaptive controller is designed to overcome this problem, in which control signals are bounded using saturation functions. The nonlinear adaptive control scheme yields asymptotic convergence of the vehicle to the reference trajectory, in the presence of parametric uncertainties. The stability of the presented control laws is proved in the sense of Lyapunov theory and Barbalat׳s lemma. Efficiency of presented controller using saturation functions is verified through comparing numerical simulations of both controllers.
Resumo:
With the rapid development of various technologies and applications in smart grid implementation, demand response has attracted growing research interests because of its potentials in enhancing power grid reliability with reduced system operation costs. This paper presents a new demand response model with elastic economic dispatch in a locational marginal pricing market. It models system economic dispatch as a feedback control process, and introduces a flexible and adjustable load cost as a controlled signal to adjust demand response. Compared with the conventional “one time use” static load dispatch model, this dynamic feedback demand response model may adjust the load to a desired level in a finite number of time steps and a proof of convergence is provided. In addition, Monte Carlo simulation and boundary calculation using interval mathematics are applied for describing uncertainty of end-user's response to an independent system operator's expected dispatch. A numerical analysis based on the modified Pennsylvania-Jersey-Maryland power pool five-bus system is introduced for simulation and the results verify the effectiveness of the proposed model. System operators may use the proposed model to obtain insights in demand response processes for their decision-making regarding system load levels and operation conditions.
Resumo:
Purpose: This is a study of the social consequences of accounting controls over labour. It examines the system of tasking used to control Indian indentured workers using a governmentality approach in the historical context of Fijian sugar plantations during the British colonial period, from 1879 to 1920. Method/ Methodology: Archival data consisting of documents from the Colonial Secretary’s Office, reports and related literature on Indian indentured labour was accessed from the National Archives of Fiji. In addition, documented accounts of the experiences of indentured labourers over the period of the study give voice to the social costs of the indenture system, highlighting the social impact of accounting control systems. Findings: Accounting and management controls were developed to extract surplus value from Indian labour. The practice of tasking was implemented in a plantation structure where indentured labourers were controlled hierarchically through a variety of calculative monitoring practices. This resulted in the exploitation and consequent economic, social and racial marginalisation of indentured workers. Originality: The paper contributes to the growing body of literature highlighting the social effects of accounting control systems. It exposes the social costs borne by indentured workers employed on Fijian sugar plantations. Practice/ Research Implications: The study promotes better understanding of the practice and impact of accounting as a technology of government and control within a particular institutional setting, in this case the British colony of Fiji. By highlighting the social implications of these controls in their historical context, we alert corporations, government policy makers, accountants and workers to the socially damaging effects of exploitive management control systems.
Resumo:
There is an increased interest in the use of Unmanned Aerial Vehicles for load transportation from environmental remote sensing to construction and parcel delivery. One of the main challenges is accurate control of the load position and trajectory. This paper presents an assessment of real flight trials for the control of an autonomous multi-rotor with a suspended slung load using only visual feedback to determine the load position. This method uses an onboard camera to take advantage of a common visual marker detection algorithm to robustly detect the load location. The load position is calculated using an onboard processor, and transmitted over a wireless network to a ground station integrating MATLAB/SIMULINK and Robotic Operating System (ROS) and a Model Predictive Controller (MPC) to control both the load and the UAV. To evaluate the system performance, the position of the load determined by the visual detection system in real flight is compared with data received by a motion tracking system. The multi-rotor position tracking performance is also analyzed by conducting flight trials using perfect load position data and data obtained only from the visual system. Results show very accurate estimation of the load position (~5% Offset) using only the visual system and demonstrate that the need for an external motion tracking system is not needed for this task.
Resumo:
This paper introduces a machine learning based system for controlling a robotic manipulator with visual perception only. The capability to autonomously learn robot controllers solely from raw-pixel images and without any prior knowledge of configuration is shown for the first time. We build upon the success of recent deep reinforcement learning and develop a system for learning target reaching with a three-joint robot manipulator using external visual observation. A Deep Q Network (DQN) was demonstrated to perform target reaching after training in simulation. Transferring the network to real hardware and real observation in a naive approach failed, but experiments show that the network works when replacing camera images with synthetic images.
Resumo:
As one of the most widely used wireless network technologies, IEEE 802.11 wireless local area networks (WLANs) have found a dramatically increasing number of applications in soft real-time networked control systems (NCSs). To fulfill the real-time requirements in such NCSs, most of the bandwidth of the wireless networks need to be allocated to high-priority data for periodic measurements and control with deadline requirements. However, existing QoS-enabled 802.11 medium access control (MAC) protocols do not consider the deadline requirements explicitly, leading to unpredictable deadline performance of NCS networks. Consequentially, the soft real-time requirements of the periodic traffic may not be satisfied, particularly under congested network conditions. This paper makes two main contributions to address this problem in wireless NCSs. Firstly, a deadline-constrained MAC protocol with QoS differentiation is presented for IEEE 802.11 soft real-time NCSs. It handles periodic traffic by developing two specific mechanisms: a contention-sensitive backoff mechanism, and an intra-traffic-class QoS differentiation mechanism. Secondly, a theoretical model is established to describe the deadline-constrained MAC protocol and evaluate its performance of throughput, delay and packet-loss ratio in wireless NCSs. Numerical studies are conducted to validate the accuracy of the theoretical model and to demonstrate the effectiveness of the new MAC protocol.
Resumo:
Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems have recently been added to the already wide collection of wireless sensor networks applications. The PCS/SCADA environment is somewhat more amenable to the use of heavy cryptographic mechanisms such as public key cryptography than other sensor application environments. The sensor nodes in the environment, however, are still open to devastating attacks such as node capture, which makes designing a secure key management challenging. In this paper, a key management scheme is proposed to defeat node capture attack by offering both forward and backward secrecies. Our scheme overcomes the pitfalls which Nilsson et al.'s scheme suffers from, and is not more expensive than their scheme.
Resumo:
A Positive Buck- Boost (PBB) converter is a known DC-DC converter that can operate in step up and step down modes. Unlike Buck, Boost, and Inverting Buck Boost converters, the inductor current of a PBB can be controlled independently of its voltage conversion ratio. In other words, the inductor of PBB can be utilised as an energy storage unit in addition to its main function of energy transfer. In this paper, the capability of PBB to store energy has been utilised to achieve robustness against input voltage fluctuations and output current changes. The control strategy has been developed to keep accuracy, affordability, and simplicity acceptable. To improve the efficiency of the system a Smart Load Controller (SLC) has been suggested. Applying SLC extra current storage occurs when there is sudden loads change otherwise little extra current is stored.
Resumo:
The title of this book, Hard Lesson: Reflections on Crime control in Late Modernity, contains a number of clues about its general theoretical direction. It is a book concerned, fist and foremost, with the vagaries of crime control in western neo-liberal and English speaking countries. More specifically, Hard Lessons draws attention to a number of examples in which discrete populations – those who have in one way or another offended against the criminal law - have become the subjects of various forms of stare intervention, regulation and control. We are concerned most of all with the ways in which recent criminal justice policies and practices have resulted in what are variously described as unintended consequences, unforeseen outcomes, unanticipated results, counter-productive effects or negative side effects. At their simplest, such terms refer to the apparent gulf between intention and outcome; they often form the basis for considerable amount of policy reappraisal, soul searching and even nihilistic despair among the mamandirns of crime control. Unintended consequences can, of course, be both positive and negative. Occasionally, crime control measures may result in beneficial outcomes, such as the use of DNA to acquit wrongly convicted prisoners. Generally, however, unforeseen effects tend to be negative and even entirely counterproductive, and/or directly opposite to what were originally intended. All this, of course, presupposes some sort of rational, well meaning and transparent policy making process so beloved by liberal social policy theorists. Yet, as Judith Bessant points out in her chapter, this view of policy formulation tends to obscure the often covert, regulatory and downright malevolent intentions contained in many government policies and practices. Indeed, history is replete with examples of governments seeking to mask their real aims from a prying public eye. Denials and various sorts of ‘techniques of neutralisation’ serve to cloak the real or ‘underlying’ aims of the powerful (Cohen 2000). The latest crop of ‘spin doctors’ and ‘official spokespersons’ has ensured that the process of governmental obfuscation, distortion and concealment remains deeply embedded in neo-liberal forms of governance. There is little new or surprising in this; nor should we be shocked when things ‘go wrong’ in the domain of crime control since many unintended consequences are, more often than not, quite predictable. Prison riots, high rates of recidivism and breaches of supervision orders, expansion rather than contraction of control systems, laws that create the opposite of what was intended – all these are normative features of western crime control. Indeed, without the deep fault lines running between policy and outcome it would be hard to imagine what many policy makers, administrators and practitioners would do: their day to day work practices and (and incomes) are directly dependent upon emergent ‘service delivery’ problems. Despite recurrent howls of official anguish and occasional despondency it is apparent that those involved in the propping up the apparatus of crime control have a vested interest in ensuring that polices and practices remain in an enduring state of review and reform.
Resumo:
This paper compares the performances of two different optimisation techniques for solving inverse problems; the first one deals with the Hierarchical Asynchronous Parallel Evolutionary Algorithms software (HAPEA) and the second is implemented with a game strategy named Nash-EA. The HAPEA software is based on a hierarchical topology and asynchronous parallel computation. The Nash-EA methodology is introduced as a distributed virtual game and consists of splitting the wing design variables - aerofoil sections - supervised by players optimising their own strategy. The HAPEA and Nash-EA software methodologies are applied to a single objective aerodynamic ONERA M6 wing reconstruction. Numerical results from the two approaches are compared in terms of the quality of model and computational expense and demonstrate the superiority of the distributed Nash-EA methodology in a parallel environment for a similar design quality.
Resumo:
Computer vision is much more than a technique to sense and recover environmental information from an UAV. It should play a main role regarding UAVs’ functionality because of the big amount of information that can be extracted, its possible uses and applications, and its natural connection to human driven tasks, taking into account that vision is our main interface to world understanding. Our current research’s focus lays on the development of techniques that allow UAVs to maneuver in spaces using visual information as their main input source. This task involves the creation of techniques that allow an UAV to maneuver towards features of interest whenever a GPS signal is not reliable or sufficient, e.g. when signal dropouts occur (which usually happens in urban areas, when flying through terrestrial urban canyons or when operating on remote planetary bodies), or when tracking or inspecting visual targets—including moving ones—without knowing their exact UMT coordinates. This paper also investigates visual serving control techniques that use velocity and position of suitable image features to compute the references for flight control. This paper aims to give a global view of the main aspects related to the research field of computer vision for UAVs, clustered in four main active research lines: visual serving and control, stereo-based visual navigation, image processing algorithms for detection and tracking, and visual SLAM. Finally, the results of applying these techniques in several applications are presented and discussed: this study will encompass power line inspection, mobile target tracking, stereo distance estimation, mapping and positioning.