240 resultados para Faculty Compensation and Benefits


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews some recent results in motion control of marine vehicles using a technique called Interconnection and Damping Assignment Passivity-based Control (IDA-PBC). This approach to motion control exploits the fact that vehicle dynamics can be described in terms of energy storage, distribution, and dissipation, and that the stable equilibrium points of mechanical systems are those at which the potential energy attains a minima. The control forces are used to transform the closed-loop dynamics into a port-controlled Hamiltonian system with dissipation. This is achieved by shaping the energy-storing characteristics of the system, modifying its interconnection structure (how the energy is distributed), and injecting damping. The end result is that the closed-loop system presents a stable equilibrium (hopefully global) at the desired operating point. By forcing the closed-loop dynamics into a Hamiltonian form, the resulting total energy function of the system serves as a Lyapunov function that can be used to demonstrate stability. We consider the tracking and regulation of fully actuated unmanned underwater vehicles, its extension to under-actuated slender vehicles, and also manifold regulation of under-actuated surface vessels. The paper is concluded with an outlook on future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The television quiz program Letters and Numbers, broadcast on the SBS network, has recently become quite popular in Australia. This paper considers an implementation in Excel 2010 and its potential as a vehicle to showcase a range of mathematical and computing concepts and principles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most urban dwelling Australians take secure and safe water supplies for granted. That is, they have an adequate quantity of water at a quality that can be used by people without harm from human and animal wastes, salinity and hardness or pollutants from agriculture and manufacturing industries. Australia wide urban and peri-urban dwellers use safe water for all domestic as well as industrial purposes. However, this is not the situation remote regions in Australia where availability and poor quality water can be a development constraint. Nor is it the case in Sri Lanka where people in rural regions are struggling to obtain a secure supply of water, irrespective of it being safe because of the impact of faecal and other contaminants. The purposes of this paper are to overview: the population and environmental health challenges arising from the lack of safe water in rural and remote communities; response pathways to address water quality issues; and the status of and need for integrated catchment management (ICM) in selected remote regions of Australia and vulnerable and lagging rural regions in Sri Lanka. Conclusions are drawn that focus on the opportunity for inter-regional collaborations between Australia and Sri Lanka for the delivery of safe water through ICM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Flower development in kiwifruit (Actinidia spp.) is initiated in the first growing season, when undifferentiated primordia are established in latent shoot buds. These primordia can differentiate into flowers in the second growing season, after the winter dormancy period and upon accumulation of adequate winter chilling. Kiwifruit is an important horticultural crop, yet little is known about the molecular regulation of flower development. Results To study kiwifruit flower development, nine MADS-box genes were identified and functionally characterized. Protein sequence alignment, phenotypes obtained upon overexpression in Arabidopsis and expression patterns suggest that the identified genes are required for floral meristem and floral organ specification. Their role during budbreak and flower development was studied. A spontaneous kiwifruit mutant was utilized to correlate the extended expression domains of these flowering genes with abnormal floral development. Conclusions This study provides a description of flower development in kiwifruit at the molecular level. It has identified markers for flower development, and candidates for manipulation of kiwifruit growth, phase change and time of flowering. The expression in normal and aberrant flowers provided a model for kiwifruit flower development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This presentation will explore how BPM research can seamlessly combine the academic requirement of rigor with the aim to impact the practice of Business Process Management. After a brief introduction into the research agendas as they are perceived by different BPM communities, two research projects will be discussed that illustrate how empirically-informed quantitative and qualitative research, combined with design science, can lead to outcomes that BPM practitioners are willing to adopt. The first project studies the practice of process modeling using Information Systems theory, and demonstrates how a better understanding of this practice can inform the design of modeling notations and methods. The second project studies the adoption of process management within organizations, and leads to models of how organizations can incrementally transition to greater levels of BPM maturity. The presentation will conclude with recommendations for how the BPM research and practitioner communities can increasingly benefit from each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Section 180 of the Property Law Act 1974 (Qld) makes provision for an applicant to seek a statutory right of user over a neighbour’s property where such right of use is reasonably necessary in the interests of effective use in any reasonable manner of the dominant land. In recent years, the Queensland courts have been confronted with a number of such applications. Litigation has also been common in New South Wales which has a statutory provision in largely similar terms. This article seeks to identify those factors that have underpinned successful applications, the obstacles that an applicant may encounter and the considerations that have guided the courts when considering the associated issues of compensation and costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background & Objectives Emergency health services (EHS) throughout the world are increasingly congested. As more people use EHS, factors such as population growth and aging cannot fully explain this increase. Also, focus on patients’ clinical characteristics ignores the role that attitudinal and perceptual factors and motivations play in directing their decisions and actions. The aim of this study is to review and synthesize an integrated conceptual framework for understanding social psychological factors underpinning demand for EHS. Methodology A comprehensive search and review of empirical and theoretical studies about the utilization of EHS was conducted using major medical, health, social and behavioral sciences databases. Results A small number of studies used a relevant conceptual framework (e.g. Health Services Utilization Model or Health Belief Model) or their components to analyze patients’ decision to use EHS. The studies evidenced that demand was affected by perceived severity of the condition; perceived costs and benefits (e.g. availability, accessibility and affordability of alternative services); experience, preference and knowledge; perceived and actual social support; and demographic characteristics (e.g. age, sex, socioeconomic status, ethnicity, marital and living circumstances, place of residence). Conclusions Conceptual models that are commonly used in areas like social and behavioral sciences have rarely been applied in the EHS utilization field. Understanding patients’ decision-making and associated factors will lay the groundwork for identification of the evidence to inform improved policy responses and the development of demand management strategies. An integrated conceptual framework will be introduced as part of this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Ethnographic studies of cyber attacks typically aim to explain a particular profile of attackers in qualitative terms. The purpose of this paper is to formalise some of the approaches to build a Cyber Attacker Model Profile (CAMP) that can be used to characterise and predict cyber attacks. Design/methodology/approach The paper builds a model using social and economic independent or predictive variables from several eastern European countries and benchmarks indicators of cybercrime within the Australian financial services system. Findings The paper found a very strong link between perceived corruption and GDP in two distinct groups of countries – corruption in Russia was closely linked to the GDP of Belarus, Moldova and Russia, while corruption in Lithuania was linked to GDP in Estonia, Latvia, Lithuania and Ukraine. At the same time corruption in Russia and Ukraine were also closely linked. These results support previous research that indicates a strong link between been legitimate economy and the black economy in many countries of Eastern Europe and the Baltic states. The results of the regression analysis suggest that a highly skilled workforce which is mobile and working in an environment of high perceived corruption in the target countries is related to increases in cybercrime even within Australia. It is important to note that the data used for the dependent and independent variables were gathered over a seven year time period, which included large economic shocks such as the global financial crisis. Originality/value This is the first paper to use a modelling approach to directly show the relationship between various social, economic and demographic factors in the Baltic states and Eastern Europe, and the level of card skimming and card not present fraud in Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiscale, multiphase thermokinetic model is used to show the effective control of the growth orientation of thin Si NWs for nanoelectronic devices enabled by nanoscale plasma chemistry. It is shown that very thin Si NWs with [110] growth direction can nucleate at much lower process temperatures and pressures compared to thermal chemical vapor deposition where [111]-directed Si NWs are predominantly grown. These findings explain a host of experimental results and offer the possibility of energy- and matter-efficient, size- and orientation-controlled growth of [110] Si NWs for next-generation nanodevices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to their unique mechanical, electrical, optical, and thermal properties, carbon nanostructures including carbon nanotubes and graphenes show great promise for advancing the fields of biology and medicine. Many reports have demonstrated the promise of these carbon nanostructures and their hybrid structures (composites with polymers, ceramics, and metal nanoparticles, etc.) for a variety of biomedical areas ranging from biosensing, drug delivery, and diagnostics, to cancer treatment, tissue engineering, and bioterrorism prevention. However, the issue of the safety and toxicity of these carbon nanostructures, which is vital to their use as diagnostic and therapeutic tools in biomedical fields, has not been completely resolved. This paper aims to provide a summary of the features of carbon nanotube and graphene-based materials and current research progress in biomedical applications. We also highlight the current opinions within the scientific community on the toxicity and safety of these carbon structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron field emission (EFE) properties of nitrogenated carbon nanotips (NCNTPs) were studied under high-vacuum conditions. The NCNTPs were prepared in a plasma-assisted hot filament chemical vapor deposition system using CH4 and N2 as the carbon and nitrogen sources, respectively. The work functions of NCNTPs were measured using x-ray photoelectron spectroscopy. The morphological and structural properties of NCNTPs were studied by field emission scanning electron microscopy, micro-Raman spectroscopy, and x-ray photoelectron spectroscopy. The field enhancement factors of NCNTPs were calculated using relevant EFE models based on the Fowler-Nordheim approximation. Analytical characterization and modeling results were used to establish the relations between the EFE properties of NCNTPs and their morphology, structure, and composition. It is shown that the EFE properties of NCNTPs can be enhanced by the reduction of oxygen termination on the surface as well as by increasing the ratio of the NCNTP height to the radius of curvature at its top. These results also suggest that a significant amount of electrons is emitted from other surface areas besides the NCNTP tops, contrary to the common belief. The outcomes of this study advance our knowledge on the electron emission properties of carbonnanomaterials and contribute to the development of the next-generation of advanced applications in the fields of micro- and opto-electronics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene and carbon nanotubes are the most promising nanomaterials for application in various modern nanodevices. The successful production of the nanotubes and graphene in a single process was achieved by using a magnetically enhanced arc discharge in helium atmosphere between carbon and metal electrodes. A 3-D fluid model has been used to investigate the discharge parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that plasmas can minimize the adverse Gibbs-Thompson effect in thin quantum wire growth. The model of Si nanowirenucleation includes the unprecedented combination of the plasma sheath, ion- and radical-induced species creation and heating effects on the surface and within an Au catalyst nanoparticle. Compared to neutral gas thermal processes, much thinner, size-selective wires can nucleate at the same temperature and pressure while much lower energy and matter budget is needed to grow same-size wires. This explains the experimental observations and may lead to energy- and matter-efficient synthesis of a broader range of one-dimensional quantum structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical growth model is used to describe the catalyzed growth of carbon nanofibers in the sheath of a low-temperature plasma. Using the model, the effects of variation in the plasma sheath parameters and substrate potential on the carbon nanofiber growth characteristics, such as the growth rate, the effective carbon flux to the catalyst surface, and surface coverages, have been investigated. It is shown that variations in the parameters, which change the sheath width, mainly affect the growth parameters at the low catalyst temperatures, whereas the other parameters such as the gas pressure, ion temperature, and percentages of the hydrocarbon and etching gases, strongly affect the carbon nanofiber growth at higher temperatures. The conditions under which the carbon nanofiber growth can still proceed under low nanodevice-friendly process temperatures have been formulated and summarized. These results are consistent with the available experimental results and can also be used for catalyzed growth of other high-aspect-ratio nanostructures in low-temperature plasmas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma Nanoscience is a multidisciplinary research field which aims to elucidate the specific roles, purposes, and benefits of the ionized gas environment in assembling and processing nanoscale objects in natural, laboratory and technological situations. Compared to neutral gas-based routes, in low-temperature weakly-ionized plasmas there is another level of complexity related to the necessity of creating and sustaining a suitable degree of ionization and a much larger number of species generated in the gas phase. The thinner the nanotubes, the stronger is the quantum confinement of electrons and more unique size-dependent quantum effects can emerge. Furthermore, due to a very high mobility of electrons, the surfaces are at a negative potential compared to the plasma bulk. Therefore, there are non-uniform electric fields within the plasma sheath. The electric field lines start in the plasma bulk and converge to the sharp tips of the developing one-dimensional nanostructures.