225 resultados para FILM ELECTRODES
Resumo:
This paper reports on the study of the effect on adding total peripheries and sharp edges to the Schottky contact as a hydrogen sensor. Schottky contact was successfully designed and fabricated as hexagon-shape. The contact was integrated together with zinc oxide thin film and tested towards 1% hydrogen gas. Simulations of the design were conducted using COMSOL Multiphysics to observe the electric field characteristic at the contact layer. The simulation results show higher electric field induced at sharp edges with 4.18×104 V/m. Current-voltage characteristic shows 0.27 V voltage shift at 40 μA biased current.
Resumo:
In 2004, my thirtieth year of life, I began to develop and produce a documentary about the lived experience of being intersex. At the time, I didn’t ever expect the film would be autobiographical in nature. I’d known I was intersex since I was 17, and aware of my difference for many years prior, and I’d been making and presenting documentaries for almost as long, yet the idea to expose myself so publicly was frightening to me. However, I realised I couldn’t expect others to step in front of the lens when I didn’t have the courage to do so myself. The final result was Orchids: My Intersex Adventure, which maps my intersex journey from shame, stigma and secrecy to self‐acceptance. The film has now been broadcast on television sets around the world. It has also won many awards and appeared in numerous film festivals....
Resumo:
Research Statement: An urban film produced by Luke Harrison Mitchell Benham, Sharlene Anderson, Tristan Clark. RIVE NOIR explores the film noir tradition, shot on location in a dark urban space between high-rises and the river, sheltered by a highway. With an original score and striking cinematography, Rive Noir radically transforms the abandoned river’s edge through the production of an amplified reality ordinarily unseen in the Northbank. The work produced under my supervision was selected to appear in the Expanded Architecture Research Group’s International Architecture Film Festival and Panel Discussion in Sydney: The University of Sydney and Carriageworks Performance Space, 06 November 2011. QUT School of Design research submission was selected alongside exhibits by AA School of Architecture, London; The Bartlett School of Architecture, London; University of The Arts, London; Arrhaus School of Architecture, Denmark; Dublin as a Cinematic City, Ireland; Design Lab Screen Studio, Australia; and Sona Cinecity, The University of Melbourne. The exhibit included not only the screening of the film but the design project that derived from and extended the aesthetics of the urban film. The urban proposal and architectural intervention that followed the film was subsequently published in the Brisbane Times, after the urban proposal won first place in The Future of Brisbane architecture competition, which demonstrates the impact of the research project as a whole. EXPANDED ARCHITECTURE 2011 - 6th November Architecture Film Night + Panel Discussion @ Performance Space CarriageWorks was Sydney's first International Architectural Film Festival. With over 40 architectural films by local and international artists, film makers and architects. It was followed by Panel Discussion of esteemed academics and artists working in the field of architectural film.
Resumo:
Research Statement: In this research project film groups of 4-5 students under my direction produced a 3-5 minute urban film that explored the Brisbane Northbank, and which would become the basis for an urban proposal and design of a small film studio for independent filmmakers in the site. The theoretical premise was that a film studio does not simply produce movies, it creates urban effects all around it and acts as a vortex of cultural activity and social life. For this modest facility where the cinema goes out into the street, the city itself becomes the studio. Students were called to observe the historical problematics of technique, image and effect that arise in the cinema, and to apply these to their own urban-film practice. A panel of judges working in film and architecture shortlisted the 12 best films in 2010 and a major public film screening event took place at the Tribal Cinema. The Shortlisted films today form a permanent "exhibit" in YouTube. The research project was funded by the Queensland University of Technology, School of Design and received accolades from film faculty in the Creative Industries Faculty. The diverse body of work that emanated from the screening contributed a unique analysis of the Northbank to Brisbane.
Resumo:
Stereotactic radiosurgery treatments involve the delivery of very high doses for a small number of fractions. To date, there is limited data in terms of the skin dose for the very small field sizes used in these treatments. In this work, we determine relative surface doses for small size circular collimators as used in stereotactic radiosurgery treatments. Monte Carlo calculations were performed using the BEAMnrc code with a model of the Novalis 15 Trilogy linear accelerator and the BrainLab circular collimators. The surface doses were calculated at the ICRU skin dose depth of 70 m all using the 6 MV SRS x-ray beam. The calculated surface doses varied between 15 – 12% with decreasing values as the field size increased from 4 to 30 mm. In comparison, surface doses were measured using Gafchromic EBT3 film positioned at the surface of a Virtual Water phantom. The absolute agreement between calculated and measured surface doses was better than 2.5% which is well within the 20 uncertainties of the Monte Carlo calculations and the film measurements. Based on these results, we have shown that the Gafchromic EBT3 film is suitable for surface dose estimates in very small size fields as used in SRS.
Resumo:
When Dino De Laurentiis died in October 2010, most media outlets, including Australian based publications and services reported the news and most newspapers carried obituaries. Obituarists described Dino’s many failures in great detail; as film historian David Thomson wrote in The Guardian ‘there were enough bombs from Dino to level a large city’ (Thomson 2010). But Dino was also responsible in no small way for the building of new media cities in Rome, in North Carolina, and in Queensland. In this article, we draw on some of our research for that book to outline in more detail the importance of Dino De Laurentiis’s involvement to the Gold Coast studios and to film and television production in Queensland.
Resumo:
Vertical graphene nanosheets (VGNS) hold great promise for high-performance supercapacitors owing to their excellent electrical transport property, large surface area and in particular, an inherent three-dimensional, open network structure. However, it remains challenging to materialise the VGNS-based supercapacitors due to their poor specific capacitance, high temperature processing, poor binding to electrode support materials, uncontrollable microstructure, and non-cost effective way of fabrication. Here we use a single-step, fast, scalable, and environmentally-benign plasma-enabled method to fabricate VGNS using cheap and spreadable natural fatty precursor butter, and demonstrate the controllability over the degree of graphitization and the density of VGNS edge planes. Our VGNS employed as binder-free supercapacitor electrodes exhibit high specific capacitance up to 230 F g−1 at a scan rate of 10 mV s−1 and >99% capacitance retention after 1,500 charge-discharge cycles at a high current density, when the optimum combination of graphitic structure and edge plane effects is utilised. The energy storage performance can be further enhanced by forming stable hybrid MnO2/VGNS nano-architectures which synergistically combine the advantages from both VGNS and MnO2. This deterministic and plasma-unique way of fabricating VGNS may open a new avenue for producing functional nanomaterials for advanced energy storage devices.
Resumo:
The effect of plasmonoscillations, induced by pulsed laserirradiation, on the DC tunnel current between islands in a discontinuous thin goldfilm is studied. The tunnel current is found to be strongly enhanced by partial rectification of the plasmon-induced AC tunnel currents flowing between adjacent gold islands. The DC tunnel current enhancement is found to increase approximately linearly with the laser intensity and the applied DC bias voltage. The experimental data can be well described by an electron tunnelling model which takes the plasmon-induced AC voltage into account. Thermal heating seems not to contribute to the tunnel current enhancement.
Resumo:
We have demonstrated the nonlinear absorption at 532 nm wavelength in an Au semi-continuous film (SF) resulting from smearing of the Fermi distribution and diffusion of conduction electrons into the substrate. The Au SF was irradiated by a pulsed laser with 8 ns pulse width at 532 nm in near resonance with the interband transition of the Au. We determined the temperature increase in the SF for different intensities by electrical measurement. We calculated the temperature increase by using a 1D heat transport equation; comparing the results of the calculation with measured values for the temperature increase, revealed the nonlinear absorption in the Au SF. We employed this deviation from linear behaviour to determine the nonlinear absorption coefficient.
Resumo:
Using a multiple plasma deposition-annealing (MDA) technique, we have fabricated an Au nanoisland-based thin film nanoresistor with a very low temperature coefficient of electrical resistivity in a cryogenic-to-room temperature range of 10 to 300 K. The nanoislanded gold film was deposited on a SiO2/Si wafer (500 nm SiO2 thickness) between two 300 nm thick Au electrodes which were separated by 100 m. A sophisticated selection of the thickness of the nanoislanded gold film, the annealing temperature, as well as the number of deposition/annealing cycles resulted in the fabrication of a nanoresistor with a temperature coefficient of electrical resistivity of 2.1 × 10-3 K-1 and the resistivity deviation not exceeding 2% in a cryogenic-to-room temperature range. We have found that the constant resistivity regime of the nanoisland-based thin film nanoresistor corresponds to a minimized nanoisland activation energy (approximately 0.3 meV). This energy can be minimized by reducing the nearest neighbor distance and increasing the size of the Au nanoislands in the optimized nanoresistor structure. It is shown that the constant resistivity nanoresistor operates in the regime where the thermally activated electron tunneling is compensated by the negative temperature dependence of the metallic-type conductivity of nanoislands. Our results are relevant to the development of commercially viable methods of nanoresistor production for various nanoelectronics-based devices. The proposed MDA technique also provides the opportunity to fabricate large arrays of metallic nanoparticles with controllable size, shapes and inter-nanoparticle gaps.
Resumo:
A novel approach to large-scale production of high-quality graphene flakes in magnetically-enhanced arc discharges between carbon electrodes is reported. A non-uniform magnetic field is used to control the growth and deposition zones, where the Y-Ni catalyst experiences a transition to the ferromagnetic state, which in turn leads to the graphene deposition in a collection area. The quality of the produced material is characterized by the SEM, TEM, AFM, and Raman techniques. The proposed growth mechanism is supported by the nucleation and growth model.
Resumo:
The effect of the film thickness and postannealing temperature on visible photoluminescence (PL) from Si Nx films synthesized by plasma-assisted radio frequency magnetron sputtering on Si O2 buffer layers is investigated. It is shown that strong visible PL is achieved at annealing temperatures above 650 °C. The optimum annealing temperature for the maximum PL yield strongly depends on the film thickness and varies from 800 to 1200°C. A comparative composition-structure-property analysis reveals that the PL intensity is directly related to the content of the Si-O and Si-N bonds in the Si Nx films. Therefore, sufficient oxidation and moderate nitridation of Si Nx Si O2 films during the plasma-based growth process are crucial for a strong PL yield. Excessively high annealing temperatures lead to weakened Si-N bonds in thinner Si Nx films, which eventually results in a lower PL intensity.
Resumo:
Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.
Resumo:
Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.