356 resultados para Expression.
Resumo:
Background Cancer outlier profile analysis (COPA) has proven to be an effective approach to analyzing cancer expression data, leading to the discovery of the TMPRSS2 and ETS family gene fusion events in prostate cancer. However, the original COPA algorithm did not identify down-regulated outliers, and the currently available R package implementing the method is similarly restricted to the analysis of over-expressed outliers. Here we present a modified outlier detection method, mCOPA, which contains refinements to the outlier-detection algorithm, identifies both over- and under-expressed outliers, is freely available, and can be applied to any expression dataset. Results We compare our method to other feature-selection approaches, and demonstrate that mCOPA frequently selects more-informative features than do differential expression or variance-based feature selection approaches, and is able to recover observed clinical subtypes more consistently. We demonstrate the application of mCOPA to prostate cancer expression data, and explore the use of outliers in clustering, pathway analysis, and the identification of tumour suppressors. We analyse the under-expressed outliers to identify known and novel prostate cancer tumour suppressor genes, validating these against data in Oncomine and the Cancer Gene Index. We also demonstrate how a combination of outlier analysis and pathway analysis can identify molecular mechanisms disrupted in individual tumours. Conclusions We demonstrate that mCOPA offers advantages, compared to differential expression or variance, in selecting outlier features, and that the features so selected are better able to assign samples to clinically annotated subtypes. Further, we show that the biology explored by outlier analysis differs from that uncovered in differential expression or variance analysis. mCOPA is an important new tool for the exploration of cancer datasets and the discovery of new cancer subtypes, and can be combined with pathway and functional analysis approaches to discover mechanisms underpinning heterogeneity in cancers
Resumo:
Objectives: This qualitative study canvassed residents' perceptions of the needs and barriers to the expression of sexuality in long-term care. Methods: Sixteen residents, including five with dementia, from six aged care facilities in two Australian states were interviewed. Data were analysed using a constant comparative method. Results: Four categories describe residents' views about sexuality, their needs and barriers to its expression: ‘It still matters’; ‘Reminiscence and resignation’, ‘It's personal’, and ‘It's an unconducive environment’. Discussion: Residents, including those with dementia, saw themselves as sexual beings and with a continuing need and desire to express their sexuality. The manner in which it was expressed varied. Many barriers to sexual expression were noted, including negative attitudes of staff, lack of privacy and limited opportunities for the establishment of new relationships or the continuation of old ones. Interviewees agreed that how a resident expressed their sexuality was their business and no one else's.
Resumo:
Recent studies demonstrated endogenous expression level of Sox2, Oct-4 and c-Myc is correlated with the pluripotency and successful induction of induced pluripotent stem cells (iPSCs). Periondontal ligament cells (PDLCs)have multi-lineage diferentiation capability and ability to maintain undifferentiated stage, which makes PDLCs a suitable cell source for tissue repair and regeneration. To elucidate the effect of in vitro culture condition on the stemness potential of PDLCs, we explored the cell growth, proliferation, cell cycle, and the expression of Sox2, Oct-4 and c-Myc in PDLCs from passage 1 to 7 with or without the addition of recombinant human BMP4(rhBMP4). Our results revealed that BMP-4 promoted cell growth and proliferation, arrested PDLCs in S phase of cell cycle and upregulated PI value. It was revealed that without the addition of rhBMP4, the expression of Sox2, Oct-4 and c-Myc in PDLCs only maintained nucleus location until passage 3, then lost nucleus location subsequently. The mRNA expression in PDLCs further confirmed that the level of Sox2 and Oct-4 peaked at passage 3, then decreased afterwards, whereas c-Myc maintained consistently upregulation along passages. after the treatment with rhBMP4, the expression of Sox2, Oct-4 and c-Myc in PDLCs maintained nucleus location even at passage 7 and the mRNA expression of Sox2 and Oct-4 significantly upregulated at passage 5 and 7. These results demonstrated that addition of rhBMP-4 in the culture media could improve the current culture condition for PDLCs to maintain in an undifferentiated stage.
Resumo:
Phosphorylation and activation of Akt1 is a crucial signaling event that promotes adipogenesis. However, neither the complex multistep process that leads to activation of Akt1 through phosphorylation at Thr308 and Ser473 nor the mechanism by which Akt1 stimulates adipogenesis is fully understood. We found that the BSD domain–containing signal transducer and Akt interactor (BSTA) promoted phosphorylation of Akt1 at Ser473 in various human and murine cells, and we uncovered a function for the BSD domain in BSTA-Akt1 complex formation. The mammalian target of rapamycin complex 2 (mTORC2) facilitated the phosphorylation of BSTA and its association with Akt1, and the BSTA-Akt1 interaction promoted the association of mTORC2 with Akt1 and phosphorylation of Akt1 at Ser473 in response to growth factor stimulation. Furthermore, analyses of bsta gene-trap murine embryonic stem cells revealed an essential function for BSTA and phosphorylation of Akt1 at Ser473 in promoting adipocyte differentiation, which required suppression of the expression of the gene encoding the transcription factor FoxC2. These findings indicate that BSTA is a molecular switch that promotes phosphorylation of Akt1 at Ser473 and reveal an mTORC2-BSTA-Akt1-FoxC2–mediated signaling mechanism that is critical for adipocyte differentiation.
Resumo:
Resistance to chemotherapy and metastases are the major causes of breast cancer-related mortality. Moreover, cancer stem cells (CSC) play critical roles in cancer progression and treatment resistance. Previously, it was found that CSC-like cells can be generated by aberrant activation of epithelial–mesenchymal transition (EMT), thereby making anti-EMT strategies a novel therapeutic option for treatment of aggressive breast cancers. Here, we report that the transcription factor FOXC2 induced in response to multiple EMT signaling pathways as well as elevated in stem cell-enriched factions is a critical determinant of mesenchymal and stem cell properties, in cells induced to undergo EMT- and CSC-enriched breast cancer cell lines. More specifically, attenuation of FOXC2 expression using lentiviral short hairpin RNA led to inhibition of the mesenchymal phenotype and associated invasive and stem cell properties, which included reduced mammosphere-forming ability and tumor initiation. Whereas, overexpression of FOXC2 was sufficient to induce CSC properties and spontaneous metastasis in transformed human mammary epithelial cells. Furthermore, a FOXC2-induced gene expression signature was enriched in the claudin-low/basal B breast tumor subtype that contains EMT and CSC features. Having identified PDGFR-β to be regulated by FOXC2, we show that the U.S. Food and Drug Administration-approved PDGFR inhibitor, sunitinib, targets FOXC2-expressing tumor cells leading to reduced CSC and metastatic properties. Thus, FOXC2 or its associated gene expression program may provide an effective target for anti-EMT-based therapies for the treatment of claudin-low/basal B breast tumors or other EMT-/CSC-enriched tumors.
Reduced Il17a expression distinguishes a Ly6cloMHCIIhi macrophage population promoting wound healing
Resumo:
Macrophages are the main components of inflammation during skin wound healing. They are critical in wound closure and in excessive inflammation, resulting in defective healing observed in chronic wounds. Given the heterogeneity of macrophage phenotypes and functions, we here hypothesized that different subpopulations of macrophages would have different and sometimes opposing effects on wound healing. Using multimarker flow cytometry and RNA expression array analyses on macrophage subpopulations from wound granulation tissue, we identified a Ly6cloMHCIIhi “noninflammatory” subset that increased both in absolute number and proportion during normal wound healing and was missing in Ob/Ob and MYD88−/− models of delayed healing. We also identified IL17 as the main cytokine distinguishing this population from proinflammatory macrophages and demonstrated that inhibition of IL17 by blocking Ab or in IL17A−/− mice accelerated normal and delayed healing. These findings dissect the complexity of the role and activity of the macrophages during wound inflammation and may contribute to the development of therapeutic approaches to restore healing in chronic wounds.
Resumo:
Background Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar expression levels across a subset of conditions. This paper proposes a seed-based algorithm that identifies coherent genes in an exhaustive, but efficient manner. Methods In order to find the biclusters in a gene expression dataset, we exhaustively select combinations of genes and conditions as seeds to create candidate bicluster tables. The tables have two columns: (a) a gene set, and (b) the conditions on which the gene set have dissimilar expression levels to the seed. First, the genes with less than the maximum number of dissimilar conditions are identified and a table of these genes is created. Second, the rows that have the same dissimilar conditions are grouped together. Third, the table is sorted in ascending order based on the number of dissimilar conditions. Finally, beginning with the first row of the table, a test is run repeatedly to determine whether the cardinality of the gene set in the row is greater than the minimum threshold number of genes in a bicluster. If so, a bicluster is outputted and the corresponding row is removed from the table. Repeating this process, all biclusters in the table are systematically identified until the table becomes empty. Conclusions This paper presents a novel biclustering algorithm for the identification of additive biclusters. Since it involves exhaustively testing combinations of genes and conditions, the additive biclusters can be found more readily.
Resumo:
Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease.
Resumo:
This pilot study aimed to compare the effect of companion robots (PARO) to participation in an interactive reading group on emotions in people living with moderate to severe dementia in a residential care setting. A randomized crossover design, with PARO and reading control groups, was used. Eighteen residents with mid- to late-stage dementia from one aged care facility in Queensland, Australia, were recruited. Participants were assessed three times using the Quality of Life in Alzheimer’s Disease, Rating Anxiety in Dementia, Apathy Evaluation, Geriatric Depression, and Revised Algase Wandering Scales. PARO had a moderate to large positive influence on participants’ quality of life compared to the reading group. The PARO intervention group had higher pleasure scores when compared to the reading group. Findings suggest PARO may be useful as a treatment option for people with dementia; however, the need for a larger trial was identified.
Resumo:
Eph receptor tyrosine kinases and their ligands, the ephrins, regulate the development and maintenance of multiple organs but little is known about their potential role within the cornea. The purpose of this study was to perform a thorough investigation of Eph/ephrin expression within the human cornea including the limbal stem cell niche. Initially, immunohistochemistry was performed on human donor eyes to determine the spatial distribution of Eph receptors and ephrins in the cornea and limbus. Patterns of Eph/ephrin gene expression in (1) immortalised human corneal endothelial (B4G12) or corneal epithelial (HCE-T) cell lines, and (2) primary cultures of epithelial or stromal cells established from the corneal limbus of cadaveric eye tissue were then assessed by reverse transcription (RT) PCR. Limbal epithelial or stromal cells from primary cultures were also assessed for evidence of Eph/ephrin-reactivity by immunofluorescence. Immunoreactivity for ephrinA1 and EphB4 was detected in the corneal endothelium of donor eyes. EphB4 was also consistently detected in the limbal and corneal epithelium and in cells located in the stroma of the peripheral cornea. Expression of multiple Eph/ephrin genes was detected in immortalised corneal epithelial and endothelial cell lines. Evidence of Eph/ephrin gene expression was also demonstrated in primary cultures of human limbal stromal (EphB4, B6; ephrinA5) and epithelial cells (EphA1, A2; ephrinA5, B2) using both RT-PCR and immunofluorescence. The expression of Eph receptors and ephrins within the human cornea and limbus is much wider than previously appreciated and suggests multiple potential roles for these molecules in the maintenance of normal corneal architecture.
Resumo:
This research paper explores the impact product personalisation has upon product attachment and aims to develop a deeper understanding of why, how and if consumers choose to do so. The current research in this field is mainly based on attachment theories and is predominantly product specific. This paper researches the link between product attachment and personalisation through in-depth, semi-structured interviews, where the data has been thematically analysed and broken down into three themes, and nine sub-themes. It was found that participants did become more attached to products once they were personalised and the reasons why this occurred varied. The most common reasons that led to personalisation were functionality and usability, the expression of personality through a product and the complexity of personalisation. The reasons why participants felt connected to their products included strong emotions/memories, the amount of time and effort invested into the personalisation, a sense of achievement. Reasons behind the desire for personalisation included co-designing, expression of uniqueness/individualism and having choice for personalisation. Through theme and inter-theme relationships, many correlations were formed, which created the basis for design recommendations. These recommendations demonstrate how a designer could implement the emotions and reasoning for personalisation into the design process.