165 resultados para Emma Barrow
Resumo:
AIM The aim of this paper was to review the current discourse in relation to intensive care unit (ICU) delirium. In particular, it will discuss the predisposing and contributory factors associated with delirium's development as well as effects of delirium on patients, staff and family members. BACKGROUND Critically ill patients are at greater risk of developing delirium and, with an ageing population and increased patient acuity permitted by medical advances, delirium is a growing problem in the ICU. However, there is a universal consensus that the definition of ICU delirium needs improvement to aid its recognition and to ensure both hypoalert-hypoactive and hyperalert-hyperactive variants are easily and readily identified. RELEVANCE TO CLINICAL PRACTICE The effects of ICU delirium have cost implications to the National Health Service in terms of prolonged ventilation and length of hospital stay. The causes of delirium can be readily classified as either predisposing or precipitating factors, which are organic in nature and commonly reversible. However, contributory factors also exist to exacerbate delirium and having an awareness of all these factors promises to aid prevention and expedite treatment. This will avoid or limit the host of adverse physiological and psychological consequences that delirium can provoke and directly enhance both patient and staff safety. CONCLUSIONS Routine screening of all patients in the ICU for the presence of delirium is crucial to its successful management. Nurses are on the front line to detect, manage and even prevent delirium.
Resumo:
Sorghum is a food and feed cereal crop adapted to heat and drought and a staple for 500 million of the world’s poorest people. Its small diploid genome and phenotypic diversity make it an ideal C4 grass model as a complement to C3 rice. Here we present high coverage (16–45 × ) resequenced genomes of 44 sorghum lines representing the primary gene pool and spanning dimensions of geographic origin, end-use and taxonomic group. We also report the first resequenced genome of S. propinquum, identifying 8 M high-quality SNPs, 1.9 M indels and specific gene loss and gain events in S. bicolor. We observe strong racial structure and a complex domestication history involving at least two distinct domestication events. These assembled genomes enable the leveraging of existing cereal functional genomics data against the novel diversity available in sorghum, providing an unmatched resource for the genetic improvement of sorghum and other grass species.
Resumo:
Event report on the Open Access and Research 2013 conference which focused on recent developments and the strategic advantages they bring to the research sector.
Resumo:
This research analyses the extent of damage to buildings in Brisbane, Ipswich and Grantham during the recent Eastern Australia flooding and explore the role planning and design/construction regulations played in these failures. It highlights weaknesses in the current systems and propose effective solutions to mitigate future damage and financial loss under current or future climates. 2010 and early 2011 saw major flooding throughout much of Eastern Australia. Queensland and Victoria were particularly hard hit, with insured losses in these states reaching $2.5 billion and many thousands of homes inundated. The Queensland cities of Brisbane and Ipswich were the worst affected; around two-thirds of all inundated property/buildings were in these two areas. Other local government areas to record high levels of inundation were Central Highlands and Rockhampton Regional Councils in Queensland, and Buloke, Campaspe, Central Gold Fields and Loddon in Victoria. Flash flooding was a problem in a number of Victorian councils, but the Lockyer Valley west of Ipswich suffered the most extensive damage with 19 lives lost and more than 100 homes completely destroyed. In all more than 28,000 properties were inundated in Queensland and around 2,500 buildings affected in Victoria. Of the residential properties affected in Brisbane, around 90% were in areas developed prior to the introduction of floodplain development controls, with many also suffering inundation during the 1974 floods. The project developed a predictive model for estimating flood loss and occupant displacement. This model can now be used for flood risk assessments or rapid assessment of impacts following a flood event.
Resumo:
Otitis media (OM) (a middle ear infection) is a common childhood illness that can leave some children with permanent hearing loss. OM can arise following infection with a variety of different pathogens, including a coinfection with influenza A virus (IAV) and Streptococcus pneumoniae (the pneumococcus). We and others have demonstrated that coinfection with IAV facilitates the replication of pneumococci in the middle ear. Specifically, we used a mouse model of OM to show that IAV facilitates the outgrowth of S. pneumoniae in the middle ear by inducing middle ear inflammation. Here, we seek to understand how the host inflammatory response facilitates bacterial outgrowth in the middle ear. Using B cell-deficient infant mice, we show that antibodies play a crucial role in facilitating pneumococcal replication. We subsequently show that this is due to antibody-dependent neutrophil extracellular trap (NET) formation in the middle ear, which, instead of clearing the infection, allows the bacteria to replicate. We further demonstrate the importance of these NETs as a potential therapeutic target through the transtympanic administration of a DNase, which effectively reduces the bacterial load in the middle ear. Taken together, these data provide novel insight into how pneumococci are able to replicate in the middle ear cavity and induce disease.
Resumo:
Drawing on principles of social exchange this thesis employs mediated regression to investigate the relationship between internal communication and employee engagement in the Australian workforce. Findings suggest organisations and supervisors should focus internal communication efforts toward building greater perceptions of support and stronger identification among employees in order to foster optimal engagement. This research contributes to public relations and management scholarship through understanding how perceived support and identification act as mediating mechanisms in the relationship between internal communication and employee engagement at the organisational and supervisory level.
Resumo:
This chapter draws on biographical data about two notable pattern designers of wall surfaces in the interior. Both had personal histories of multiple careers and geographical locations and both their lives ended in mysterious circumstances. One of the pattern designers, Jim Thompson, disappeared in the Malaysian highlands in 1967 and was never found. The other, Florence Broadhurst, was brutally murdered in 1977; her case remains unsolved. This chapter theorizes that the patterned surface attracted Broadhurst and Thompson as a space to occupy and record their divergent pasts, and questions what it is to lose oneself in the surface of the interior, to find freedom (or slavery) in the abdication of control. This notion is further evidenced in creative works, including the Australian film Candy and the work by skin illustrator Emma Hack. What is it to work with the self as a two-dimensional representation in the outside world? Occupying the surface suggests a reflexive relationship with identity, that makes-over and re-shapes truths, lies and re-constructions. The chapter reminds us that the surface is never in stasis.
Resumo:
The progression of several cancers is correlated with the increased synthesis of the glycosaminoglycan, hyaluronan. Hyaluronan is synthesized at the plasma membrane by various isoforms of hyaluronan synthases (HAS). The importance of HAS2 expression in highly invasive breast cancer was characterized by the antisense inhibition of HAS2 (ASHAS2). The effect of HAS2 inhibition on cell proliferation, migration, hyaluronan metabolism, and receptor status was characterized in vitro, whereas the effect on tumorigenicity and metastasis was established in vivo. HAS2 inhibition resulted in a 24-hour lag in proliferation that was concomitant to transient arrest of 79% of the cell population in G 0-G1. Inhibition of HAS2 did not alter the expression of the other HAS isoforms, whereas hyaluronidase (HYAL2) and the hyaluronan receptor, CD44, were significantly down-regulated. ASHAS2 cells accumulated greater amounts of high molecular weight hyaluronan (>10,000 kDa) in the culture medium, whereas mock and parental cells liberated less hyaluronan of three distinct molecular weights (100, 400, and 3,000 kDa). The inhibition of HAS2 in the highly invasive MDA-MB-231 breast cancer cell line inhibited the initiation and progression of primary and secondary tumor formation following s.c. and intracardiac inoculation into nude mice, whereas controls readily established both primary and secondary tumors. The lack of primary and secondary tumor formation was manifested by increased survival times where ASHAS2 animals survived 172% longer than the control animals. Collectively, these unique results strongly implicate the central role of HAS2 in the initiation and progression of breast cancer, potentially highlighting the codependency between HAS2, CD44, and HYAL2 expression. ©2005 American Association for Cancer Research.
Resumo:
ConA-induced cell surface activation of pro-matrix metalloproteinase-2 (pro-MMP-2) by MDA-MB-231 human breast cancer cells is apparently mediated by up-regulation of membrane type 1 MMP (MT1-MMP) through transcriptional and posttranscriptional mechanisms. Here, we have explored the respective roles of cell surface clustering and protein tyrosine phosphorylation in the ConA- induction effects. Treatment with succinyl-ConA, a variant lacking significant clusterability, partially stimulated MT1-MMP mRNA and protein levels but did not induce MMP-2 activation, suggesting that clustering contributes to the transcriptional regulation by ConA but appears to be critical for the nontranscriptional component. We further found that genistein, an inhibitor of tyrosine phosphorylation, blocked ConA-induced pro-MMP-2 activation and ConA-induced MT1-MMP mRNA level in a dose-dependent manner, implicating tyrosine phosphorylation in the transcriptional aspect. This was confirmed by the dose-dependent promotion of pro-MMP-2 activation by sodium orthovanadate in the presence of suboptimal concentrations of ConA (7.5 μg/ml), with optimal effects seen at 25 μg/g orthovanadate. Genistein did not inhibit the ConA potentiation of MMP-2 activation in MCF-7 cells, in which transfected MT1-MMP is driven by a heterologous promoter, supporting the major implication of phosphotyrosine in the transcriptional component of ConA regulation. These data describe a major signaling event upstream of MT1- MMP induction by ConA and set the stage for further analysis of the nontranscriptional component.
Resumo:
In human breast cancer (HBC), as with many carcinoma systems, most matrix metalloproteinases (MMPs) are largely expressed by the stromal cells, whereas the tumour cells are relatively silent in MMP expression. To determine the tissue source of the most relevant MMPs, we xenografted HBC cell lines and HBC tissues into the mammary fat pad (MFP) or bone of immunocompromised mice and measured the expression of human and mouse MMP-2, -9, -11, -13, membrane-type-1 MMP (MT1-MMP), MT2-MMP and MT3-MMP by species-specific real-time quantitative RT-PCR. Our data confirm a stromal origin for most tumour-associated MMPs and indicate marked and consistent upregulation of stromal (mouse) MMP-13 and MT1-MMP in all xenografts studied, irrespective of implantation in the MFP or bone environments. In addition, we show increased expression of both human MMP-13 and human MT1-MMP by the MDA-MB-231 tumour cells grown in the MFP compared to in vitro production. MMP protein and activity data confirm the upregulation of MMP mRNA production and indicate an increase in the activated MMP-2 species as a result of tumour implantation. These data directly demonstrate tumour induction of MMP production by stromal cells in both the MFP and bone environments. These xenografts are a valuable means for examining in vivo production of MMPs and suggest that MMP-13 and MT1-MMP will be relevant targets for inhibiting breast cancer progression.
Resumo:
Most emergency service organisations have some form of staff support program that share general aims of promoting and maintaining the mental health of their workforce. Yet few of these services have been subject to evaluation and fewer still have commissioned external professional researchers to scrutinise their programs. The Queensland Ambulance (QAS) Service provides a comprehensive and multifaceted program that is both proactive and reactive in design and with the support of the Commissioner, was the subject of a rigorous evaluation throughout 2013. In this paper the program services are briefly outlined and the considered approach to the evaluation is presented within the context of existing scientific literature. Using focus groups, information regarding the uptake of the program’s various ‘arms’, and survey data, results suggest the program is widely used and that staff are very satisfied with the services provided. Further, analysis of established psychometric measures demonstrated organisational and interpersonal factors that are important in the promotion of mental health and in warding off the deleterious impacts that frontline emergency service staff can endure. Data presented in this paper indicate how best to ensure a professional quality of life for ambulance personnel, how to promote resilience to the sometimes extremely challenging aspects of the work role, and ways in which difficulties such as depression may be minimised.
Resumo:
Employee engagement is linked to higher productivity, lower attrition, and improved organizational reputations resulting in increased focus and resourcing by managers to foster an engaged workforce. While drivers of employee engagement have been identified as perceived support, job characteristics, and value congruence, internal communication is theoretically suggested to be a key influence in both the process and maintenance of employee engagement efforts. However, understanding the mechanisms by which internal communication influences employee engagement has emerged as a key question in the literature. The purpose of this research is to investigate whether social factors, namely perceived support and identification, play a mediating role in the relationship between internal communication and engagement. To test the theoretical model, data are collected from 200 non-executive employees using an online self-administered survey. The study applies linear and mediated regression to the model and finds that organizations and supervisors should focus internal communication efforts toward building greater perceptions of support and stronger identification among employees in order to foster optimal levels of engagement.
Resumo:
Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.
Resumo:
The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell’s genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process.
Resumo:
In contrast to extensive studies on familial breast cancer, it is currently unclear whether defects in DNA double strand break (DSB) repair genes play a role in sporadic breast cancer development and progression. We performed analysis of immunohistochemistry in an independent cohort of 235 were sporadic breast tumours. This analysis suggested that RAD51 expression is increased during breast cancer progression and metastasis and an oncogenic role for RAD51 when deregulated. Subsequent knockdown of RAD51 repressed cancer cell migration in vitro and reduced primary tumor growth in a syngeneic mouse model in vivo. Loss of RAD51 also inhibited associated metastasis not only in syngeneic mice but human xenografts and changed the metastatic gene expression profile of cancer cells, consistent with inhibition of distant metastasis. This demonstrates for the first time a new function of RAD51 that may underlie the proclivity of patients with RAD51 overexpression to develop distant metastasis. RAD51 is a potential biomarker and attractive drug target for metastatic triple negative breast cancer, with the capability to extend the survival of patients, which is less than 6 months.