193 resultados para Electrical system
Resumo:
Due to the popularity of security cameras in public places, it is of interest to design an intelligent system that can efficiently detect events automatically. This paper proposes a novel algorithm for multi-person event detection. To ensure greater than real-time performance, features are extracted directly from compressed MPEG video. A novel histogram-based feature descriptor that captures the angles between extracted particle trajectories is proposed, which allows us to capture motion patterns of multi-person events in the video. To alleviate the need for fine-grained annotation, we propose the use of Labelled Latent Dirichlet Allocation, a “weakly supervised” method that allows the use of coarse temporal annotations which are much simpler to obtain. This novel system is able to run at approximately ten times real-time, while preserving state-of-theart detection performance for multi-person events on a 100-hour real-world surveillance dataset (TRECVid SED).
A tag-based personalized item recommendation system using tensor modeling and topic model approaches
Resumo:
This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment
Resumo:
Frequency Domain Spectroscopy (FDS) is successfully being used to assess the insulation condition of oil filled power transformers. However, it has to date only been implemented on de-energized transformers, which requires the transformers to be shut down for an extended period which can result in significant costs. To solve this issue, a method of implementing FDS under energized condition is proposed here. A chirp excitation waveform is used to replace the conventional sinusoidal waveform to reduce the measurement time in this method. Investigation of the dielectric response under the influence of a high voltage stress at power frequency is reported based on experimental results. To further understand the insulation ageing process, the geometric capacitance effect is removed to enhance the detection of the ageing signature. This enhancement enables the imaginary part of admittance to be used as a new indicator to assess the ageing status of the insulation.
Resumo:
This research showed that one solution that can be used to help the students learn how to program is by providing a system that can behave like a tutor to teach the students individually. An intelligent tutoring system named CSTutor was built in this research to assist the students. CSTutor asks the student to write programs in a role playing environment, presenting the most appropriate tasks to the students, and provides help to the students' problems.
Resumo:
This paper reviews the use of multi-agent systems to model the impacts of high levels of photovoltaic (PV) system penetration in distribution networks and presents some preliminary data obtained from the Perth Solar City high penetration PV trial. The Perth Solar City trial consists of a low voltage distribution feeder supplying 75 customers where 29 consumers have roof top photovoltaic systems. Data is collected from smart meters at each consumer premises, from data loggers at the transformer low voltage (LV) side and from a nearby distribution network SCADA measurement point on the high voltage side (HV) side of the transformer. The data will be used to progressively develop MAS models.
Resumo:
This paper presents an efficient algorithm for optimizing the operation of battery storage in a low voltage distribution network with a high penetration of PV generation. A predictive control solution is presented that uses wavelet neural networks to predict the load and PV generation at hourly intervals for twelve hours into the future. The load and generation forecast, and the previous twelve hours of load and generation history, is used to assemble load profile. A diurnal charging profile can be compactly represented by a vector of Fourier coefficients allowing a direct search optimization algorithm to be applied. The optimal profile is updated hourly allowing the state of charge profile to respond to changing forecasts in load.
Resumo:
This paper details the initial design and planning of a Field Programmable Gate Array (FPGA) implemented control system that will enable a path planner to interact with a MAVLink based flight computer. The design is aimed at small Unmanned Aircraft Vehicles (UAV) under autonomous operation which are typically subject to constraints arising from limited on-board processing capabilities, power and size. An FPGA implementation for the de- sign is chosen for its potential to address such limitations through low power and high speed in-hardware computation. The MAVLink protocol offers a low bandwidth interface for the FPGA implemented path planner to communicate with an on-board flight computer. A control system plan is presented that is capable of accepting a string of GPS waypoints generated on-board from a previously developed in- hardware Genetic Algorithm (GA) path planner and feeding them to the open source PX4 autopilot, while simultaneously respond- ing with flight status information.
Resumo:
We describe an investigation into how Massey University’s Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University’s pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set.We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder’s native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.
Resumo:
We describe an investigation into how Massey University's Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University's pollen reference collection (2890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set. In addition to the Classifynder's native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples. © 2013 AIP Publishing LLC.
Resumo:
An automated melanoma diagnosis system, the so-called Skin Polar-probe, was developed to improve the chances of early detection of skin cancers and help save the lives of melanoma victims. The system will offer unique benefits to aid early detection of melanoma - the key to reducing deaths caused by this cancer.
Resumo:
This thesis was a step forward in developing probabilistic assessment of power system response to faults subject to intermittent generation by renewable energy. It has investigated the wind power fluctuation effect on power system stability, and the developed fast estimation process has demonstrated the feasibility for real-time implementation. A better balance between power network security and efficiency can be achieved based on this research outcome.
Resumo:
This thesis addresses voltage violation problem, the most critical issue associated with high level penetration of photovoltaic (PV) in electricity distribution network. A coordinated control algorithm using the reactive power from PV inverter and integrated battery energy storage has been developed and investigated in different network scenarios in the thesis. Probable variations associated with solar generation, end-user participation and network parameters are also considered. Furthermore, a unified data model and well-defined communication protocol to ensure the smooth coordination between all the components during the operation of the algorithm is described. Finally this thesis incorporated the uncertainties of solar generation using probabilistic load flow analysis.
Resumo:
Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating noncritical in-car systems. Under such conditions, however, speech recognition accuracy degrades significantly, and techniques such as speech enhancement are required to improve these accuracies. Likelihood-maximizing (LIMA) frameworks optimize speech enhancement algorithms based on recognized state sequences rather than traditional signal-level criteria such as maximizing signal-to-noise ratio. LIMA frameworks typically require calibration utterances to generate optimized enhancement parameters that are used for all subsequent utterances. Under such a scheme, suboptimal recognition performance occurs in noise conditions that are significantly different from that present during the calibration session – a serious problem in rapidly changing noise environments out on the open road. In this chapter, we propose a dialog-based design that allows regular optimization iterations in order to track the ever-changing noise conditions. Experiments using Mel-filterbank noise subtraction (MFNS) are performed to determine the optimization requirements for vehicular environments and show that minimal optimization is required to improve speech recognition, avoid over-optimization, and ultimately assist with semireal-time operation. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session only.
Resumo:
Re-supplying loads on outage through cross-connect from adjacent feeders in a distribution system may cause voltage drop and hence require load shedding. However, the surplus PV generated in some of the LV feeders can prevent load shedding, and improve reliability. In order to measure these effects, this paper proposes the application of Direct Load Flow method[1] in reliability evaluation of distribution systems with PV units. As part of this study, seasonal impacts on load consumption together with surplus PV output power injection to higher voltage networks are also considered. New indices are proposed to measure yearly expected energy export, from LV to MV and from MV to higher voltage network.