308 resultados para Da Qing hui dian
Resumo:
We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumours and ∼25% of high-grade endometrioid tumours had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor levels, and frequent TP53 mutations. Most endometrioid tumours had few copy number alterations or TP53 mutations, but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS and novel mutations in the SWI/SNF chromatin remodelling complex gene ARID5B. A subset of endometrioid tumours that we identified had a markedly increased transversion mutation frequency and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy-number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may affect post-surgical adjuvant treatment for women with aggressive tumours.
Resumo:
The numerical analysis method of cracking in cast-in-place reinforced concrete slabs is presented. T he results agree w ell with the actual conditions. T he current state of knowledge and some new research findings on crack-control are introduced such as increasing the quantities of the distribution steel, adopting fibre reinforced concrete etc. Some recommended crack-control procedures used in design construction is presented based on the investigation and study of cracking in a frame structure.
Resumo:
The addition of game design elements to non-game contexts has become known as gamification. Previous research has suggested that framing tedious and non-motivating tasks as game-like can make them enjoyable and motivating (e.g., de Oliveira, et al., 2010; Fujiki, et al., 2007; Chiu, et al., 2009). Smartphone applications lend themselves to being gamified as the underlying mobile technology has the ability to sense user activities and their surrounding environment. These sensed activities can be used to implement and enforce game-like rules based around many physical activities (e.g., exercise, travel, or eating). If researchers wish to investigate this area, they first need an existing gamified application to study. However if an appropriate application does not exist then the researcher may need to create their own gamified prototype to study. Unfortunately, there is little previous research that details or explains the design and integration of game elements to non-game mobile applications. This chapter explores this gap and shares a framework that was used to add videogame-like achievements to an orientation mobile application developed for new university students. The framework proved useful and initial results are discussed from two studies. However, further development of the framework is needed, including further consideration of what makes an effective gamified experience.
Resumo:
First principle calculations for a hexagonal (graphene-like) boron nitride (g-BN) monolayer sheet in the presence of a boron-atom vacancy show promising properties for capture and activation of carbon dioxide. CO2 is found to decompose to produce an oxygen molecule via an intermediate chemisorption state on the defect g-BN sheet. The three stationary states and two transition states in the reaction pathway are confirmed by minimum energy pathway search and frequency analysis. The values computed for the two energy barriers involved in this catalytic reaction after enthalpy correction indicate that the catalytic reaction should proceed readily at room temperature.
Resumo:
The structures and thermodynamic properties of methyl derivatives of ammonia–borane (BH3NH3, AB) have been studied with the frameworks of density functional theory and second-order Møller–Plesset perturbation theory. It is found that, with respect to pure AB, methyl ammonia–boranes show higher complexation energies and lower reaction enthalpies for the release of H2, together with a slight increment of the activation barrier. These results indicate that the methyl substitution can enhance the reversibility of the system and prevent the formation of BH3/NH3, but no enhancement of the release rate of H2 can be expected.
Resumo:
Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.
Resumo:
Co2+-doped CdSe colloidal nanowires with tunable size and dopant concentration have been prepared by a solution–liquid–solid (SLS) approach for the first time. These doped nanowires exhibit anomalous photoluminescence temperature dependence in comparison with undoped nanowires.
Resumo:
Facial landmarks play an important role in face recognition. They serve different steps of the recognition such as pose estimation, face alignment, and local feature extraction. Recently, cascaded shape regression has been proposed to accurately locate facial landmarks. A large number of weak regressors are cascaded in a sequence to fit face shapes to the correct landmark locations. In this paper, we propose to improve the method by applying gradual training. With this training, the regressors are not directly aimed to the true locations. The sequence instead is divided into successive parts each of which is aimed to intermediate targets between the initial and the true locations. We also investigate the incorporation of pose information in the cascaded model. The aim is to find out whether the model can be directly used to estimate head pose. Experiments on the Annotated Facial Landmarks in the Wild database have shown that the proposed method is able to improve the localization and give accurate estimates of pose.
Resumo:
XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier.
Resumo:
To enhance the therapeutic efficacy and reduce the adverse effects of traditional Chinese medicine, practitioners often prescribe combinations of plant species and/or minerals, called formulae. Unfortunately, the working mechanisms of most of these compounds are difficult to determine and thus remain unknown. In an attempt to address the benefits of formulae based on current biomedical approaches, we analyzed the components of Yinchenhao Tang, a classical formula that has been shown to be clinically effective for treating hepatic injury syndrome. The three principal components of Yinchenhao Tang are Artemisia annua L., Gardenia jasminoids Ellis, and Rheum Palmatum L., whose major active ingredients are 6,7-dimethylesculetin (D), geniposide (G), and rhein (R), respectively. To determine the mechanisms underlying the efficacy of this formula, we conducted a systematic analysis of the therapeutic effects of the DGR compound using immunohistochemistry, biochemistry, metabolomics, and proteomics. Here, we report that the DGR combination exerts a more robust therapeutic effect than any one or two of the three individual compounds by hitting multiple targets in a rat model of hepatic injury. Thus, DGR synergistically causes intensified dynamic changes in metabolic biomarkers, regulates molecular networks through target proteins, has a synergistic/additive effect, and activates both intrinsic and extrinsic pathways.
Resumo:
The promise of metabonomics, a new "omics" technique, to validate Chinese medicines and the compatibility of Chinese formulas has been appreciated. The present study was undertaken to explore the excretion pattern of low molecular mass metabolites in the male Wistar-derived rat model of kidney yin deficiency induced with thyroxine and reserpine as well as the therapeutic effect of Liu Wei Di Huang Wan (LW) and its separated prescriptions, a classic traditional Chinese medicine formula for treating kidney yin deficiency in China. The study utilized ultra-performance liquid chromatography/electrospray ionization synapt high definition mass spectrometry (UPLC/ESI-SYNAPT-HDMS) in both negative and positive electrospray ionization (ESI). At the same time, blood biochemistry was examined to identify specific changes in the kidney yin deficiency. Distinct changes in the pattern of metabolites, as a result of daily administration of thyroxine and reserpine, were observed by UPLC-HDMS combined with a principal component analysis (PCA). The changes in metabolic profiling were restored to their baseline values after treatment with LW according to the PCA score plots. Altogether, the current metabonomic approach based on UPLC-HDMS and orthogonal projection to latent structures discriminate analysis (OPLS-DA) indicated 20 ions (14 in the negative mode, 8 in the positive mode, and 2 in both) as "differentiating metabolites".
Resumo:
This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.
Resumo:
A simple, sensitive, and validated method was developed for simultaneous determination of scoparone, capillarisin, rhein, and emodin in rat urine by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC-MS). The urinary samples were analyzed on an Acquity UPLC BEH C18 1.7 microm 2.1x50 mm column. Scoparone, capillarisin, rhein, and emodin in rat urine were simultaneously analyzed with good separation. The lower limits of detection were 6.0, 9.0, 7.0, and 3.0 ng/mL, and the lower limits of quantification were 20.0, 33.0, 24.0, and 12.0 ng/mL for scoparone, capillarisin, rhein, and emodin, respectively. The intra- and inter-day precisions (RSD) were less than 9%. The intra- and inter-accuracies were found to be in the range of 94.14-104.54% for scoparone, 101.72-107.34% for capillarisin, 95.24-103.59% for rhein, and 101.32-107.82% for emodin at three concentration levels. The absolute recoveries for scoparone, capillarisin, rhein, and emodin were not less than 77.0%. The developed method has been applied to determine scoparone, capillarisin, rhein, and emodin in rat urine after oral administration of Yin Chen Hao Tang preparation, a traditional Chinese medicine formulation widely used in China for treatment of jaundice and liver disorders.
Resumo:
Scoparone (6,7-dimethoxycoumarin) is known to have a wide range of pharmacological properties. In this study, a rapid and validated ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTof-MS) method was developed to investigate the metabolism of scoparone in rat for the first time. The new method reduced the sample handling and analytical time by three- to six-fold, and the detection limit by five- to 1000-fold, compared to published methods. Far more metabolites were detected and identified compared to published data, which were preliminarily identified as scopoletin, isoscopoletin, isofraxidin, and fraxidin, respectively, when subjected to tandem mass spectrometry analyses. It is found that the metabolic trajectory of scoparone in rat focused on phase I metabolism which is obviously different from published results, and revealed a wide range of pharmacological properties of scoparone partly attributed to the bioactivities of its metabolites.
Resumo:
Evolutionary computation is an effective tool for solving optimization problems. However, its significant computational demand has limited its real-time and on-line applications, especially in embedded systems with limited computing resources, e.g., mobile robots. Heuristic methods such as the genetic algorithm (GA) based approaches have been investigated for robot path planning in dynamic environments. However, research on the simulated annealing (SA) algorithm, another popular evolutionary computation algorithm, for dynamic path planning is still limited mainly due to its high computational demand. An enhanced SA approach, which integrates two additional mathematical operators and initial path selection heuristics into the standard SA, is developed in this work for robot path planning in dynamic environments with both static and dynamic obstacles. It improves the computing performance of the standard SA significantly while giving an optimal or near-optimal robot path solution, making its real-time and on-line applications possible. Using the classic and deterministic Dijkstra algorithm as a benchmark, comprehensive case studies are carried out to demonstrate the performance of the enhanced SA and other SA algorithms in various dynamic path planning scenarios.