148 resultados para Cluster Analysis. Information Theory. Entropy. Cross Information Potential. Complex Data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na–Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na–HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous–Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the geological framework of these sedimentary basins, can be adopted in other complex multi-aquifer systems to assess hydrochemical evolution and its geological controls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The upstream oil and gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data” is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil and gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This viewpoint examines existing data management practices in the upstream oil and gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the way in Big Data. The comparison shows that, in companies that are widely considered to be leaders in Big Data analytics, data is regarded as a valuable asset—but this is usually not true within the oil and gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how the industry could potentially extract more value from data, and concludes with a series of policy-related questions to this end.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many nations are highlighting the need for a renaissance in the mathematical sciences as essential to the well-being of all citizens (e.g., Australian Academy of Science, 2006; 2010; The National Academies, 2009). Indeed, the first recommendation of The National Academies’ Rising Above the Storm (2007) was to vastly improve K–12 science and mathematics education. The subsequent report, Rising Above the Gathering Storm Two Years Later (2009), highlighted again the need to target mathematics and science from the earliest years of schooling: “It takes years or decades to build the capability to have a society that depends on science and technology . . . You need to generate the scientists and engineers, starting in elementary and middle school” (p. 9). Such pleas reflect the rapidly changing nature of problem solving and reasoning needed in today’s world, beyond the classroom. As The National Academies (2009) reported, “Today the problems are more complex than they were in the 1950s, and more global. They’ll require a new educated workforce, one that is more open, collaborative, and cross-disciplinary” (p. 19). The implications for the problem solving experiences we implement in schools are far-reaching. In this chapter, I consider problem solving and modelling in the primary school, beginning with the need to rethink the experiences we provide in the early years. I argue for a greater awareness of the learning potential of young children and the need to provide stimulating learning environments. I then focus on data modelling as a powerful means of advancing children’s statistical reasoning abilities, which they increasingly need as they navigate their data-drenched world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research identifies the commuting mode choice behaviour of 3537 adults living in different types of transit oriented development (TOD) in Brisbane by disentangling the effects of their “evil twin” transit adjacent developments (TADs), and by also controlling for residential self-selection, travel attitudes and preferences, and socio-demographic effects. A TwoStep cluster analysis was conducted to identify the natural groupings of respondents’ living environment based on six built environment indicators. The analysis resulted in five types of neighbourhoods: urban TODs, activity centre TODs, potential TODs, TADs, and traditional suburbs. HABITAT survey data were used to derive the commute mode choice behaviour of people living in these neighbourhoods. In addition, statements reflecting both respondents’ travel attitudes and living preferences were also collected as part of the survey. Factor analyses were conducted based on these statements and these derived factors were then used to control for residential self-selection. Four binary logistic regression models were estimated, one for each of the travel modes used (e.g. public transport, active transport, less sustainable transport such as the car/taxi, and other), to differentiate between the commuting behaviour of people living in the five types of neighbourhoods. The findings verify that urban TODs enhance the use of public transport and reduce car usage. No significant difference was found in the commuting behaviour between respondents living in traditional suburbs and TADs. The results confirm the hypothesis that TADs are the “evil twin” of TODs. The data indicates that TADs and the mode choices of residents in these neighbourhoods is a missed transport policy opportunity. Further policy efforts are required for a successive transition of TADs into TODs in order to realise the full benefits of these. TOD policy should also be integrated with context specific TOD design principles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Teachers are at the forefront of Information Communication Technology (ICT) use in schools. Teachers face many challenges and competing priorities such as literacy, numeracy and changing curriculum frameworks and are expected to adopt new ICT practices to improve students¿ outcomes. Effective professional development (PD) methods must be identified and implemented. This research examined two core issues: (1) experienced teachers' perceptions of their ICT practices and (2) how PD courses have affected these practices. This case study and its findings has important implications for the implementation of effective PD in schools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural equation modeling (SEM) is a powerful statistical approach for the testing of networks of direct and indirect theoretical causal relationships in complex data sets with intercorrelated dependent and independent variables. SEM is commonly applied in ecology, but the spatial information commonly found in ecological data remains difficult to model in a SEM framework. Here we propose a simple method for spatially explicit SEM (SE-SEM) based on the analysis of variance/covariance matrices calculated across a range of lag distances. This method provides readily interpretable plots of the change in path coefficients across scale and can be implemented using any standard SEM software package. We demonstrate the application of this method using three studies examining the relationships between environmental factors, plant community structure, nitrogen fixation, and plant competition. By design, these data sets had a spatial component, but were previously analyzed using standard SEM models. Using these data sets, we demonstrate the application of SE-SEM to regularly spaced, irregularly spaced, and ad hoc spatial sampling designs and discuss the increased inferential capability of this approach compared with standard SEM. We provide an R package, sesem, to easily implement spatial structural equation modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Big Data and predictive analytics have received significant attention from the media and academic literature throughout the past few years, and it is likely that these emerging technologies will materially impact the mining sector. This short communication argues, however, that these technological forces will probably unfold differently in the mining industry than they have in many other sectors because of significant differences in the marginal cost of data capture and storage. To this end, we offer a brief overview of what Big Data and predictive analytics are, and explain how they are bringing about changes in a broad range of sectors. We discuss the “N=all” approach to data collection being promoted by many consultants and technology vendors in the marketplace but, by considering the economic and technical realities of data acquisition and storage, we then explain why a “n « all” data collection strategy probably makes more sense for the mining sector. Finally, towards shaping the industry’s policies with regards to technology-related investments in this area, we conclude by putting forward a conceptual model for leveraging Big Data tools and analytical techniques that is a more appropriate fit for the mining sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial data analysis has become more and more important in the studies of ecology and economics during the last decade. One focus of spatial data analysis is how to select predictors, variance functions and correlation functions. However, in general, the true covariance function is unknown and the working covariance structure is often misspecified. In this paper, our target is to find a good strategy to identify the best model from the candidate set using model selection criteria. This paper is to evaluate the ability of some information criteria (corrected Akaike information criterion, Bayesian information criterion (BIC) and residual information criterion (RIC)) for choosing the optimal model when the working correlation function, the working variance function and the working mean function are correct or misspecified. Simulations are carried out for small to moderate sample sizes. Four candidate covariance functions (exponential, Gaussian, Matern and rational quadratic) are used in simulation studies. With the summary in simulation results, we find that the misspecified working correlation structure can still capture some spatial correlation information in model fitting. When the sample size is large enough, BIC and RIC perform well even if the the working covariance is misspecified. Moreover, the performance of these information criteria is related to the average level of model fitting which can be indicated by the average adjusted R square ( [GRAPHICS] ), and overall RIC performs well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the following predictive business process monitoring problem: Given the execution trace of an ongoing case,and given a set of traces of historical (completed) cases, predict the most likely outcome of the ongoing case. In this context, a trace refers to a sequence of events with corresponding payloads, where a payload consists of a set of attribute-value pairs. Meanwhile, an outcome refers to a label associated to completed cases, like, for example, a label indicating that a given case completed “on time” (with respect to a given desired duration) or “late”, or a label indicating that a given case led to a customer complaint or not. The paper tackles this problem via a two-phased approach. In the first phase, prefixes of historical cases are encoded using complex symbolic sequences and clustered. In the second phase, a classifier is built for each of the clusters. To predict the outcome of an ongoing case at runtime given its (uncompleted) trace, we select the closest cluster(s) to the trace in question and apply the respective classifier(s), taking into account the Euclidean distance of the trace from the center of the clusters. We consider two families of clustering algorithms – hierarchical clustering and k-medoids – and use random forests for classification. The approach was evaluated on four real-life datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To understand differences in the managerial ethical decision-making styles of Australian healthcare managers through the exploratory use of the Managerial Ethical Profiles (MEP) Scale. Background Healthcare managers (doctors, nurses, allied health practitioners and non-clinically trained professionals) are faced with a raft of variables when making decisions within the workplace. In the absence of clear protocols and policies healthcare managers rely on a range of personal experiences, personal ethical philosophies, personal factors and organizational factors to arrive at a decision. Understanding the dominant approaches to managerial ethical decision-making, particularly for clinically trained healthcare managers, is a fundamental step in both increasing awareness of the importance of how managers make decisions, but also as a basis for ongoing development of healthcare managers. Design Cross-sectional. Methods The study adopts a taxonomic approach that simultaneously considers multiple ethical factors that potentially influence managerial ethical decision-making. These factors are used as inputs into cluster analysis to identify distinct patterns of influence on managerial ethical decision-making. Results Data analysis from the participants (n=441) showed a similar spread of the five managerial ethical profiles (Knights, Guardian Angels, Duty Followers, Defenders and Chameleons) across clinically trained and non-clinically trained healthcare managers. There was no substantial statistical difference between the two manager types (clinical and non-clinical) across the five profiles. Conclusion This paper demonstrated that managers that came from clinical backgrounds have similar ethical decision-making profiles to non-clinically trained managers. This is an important finding in terms of manager development and how organisations understand the various approaches of managerial decision-making across the different ethical profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Capturing data from various data repositories and integrating them for productivity improvements is common in modern business organisations. With the well-accepted concept of achieving positive gains through investment in employee health and wellness, organisations have started to capture both employee health and non-health data as Employer Sponsored electronic Personal Health Records (ESPHRs). However, non-health related data in ESPHRs has hardly been taken into consideration with outcomes such as employee productivity potentially being suited for further validation and stimulation of ESPHR usage. Here we analyse selected employee demographic information (age, gender, marital status, and job grade) and health-related outcomes (absenteeism and presenteeism) of employees for evidence-based decision making. Our study considered demographic and health-related outcomes of 700 employees. Surprisingly, the analysis shows that employees with high sick leave rates are also high performers. A factor analysis shows 92% of the variance in the data can be explained by three factors, with the job grade capable of explaining 62% of the variance. Work responsibilities may drive employees to maintain high work performance despite signs of sickness, so ESPHRs should focus attention on high performers. This finding suggests new ways of extracting value from ESPHRs to support organisational health and wellness management to help assure sustainability in organisational productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study identified the areas of poor specificity in national injury hospitalization data and the areas of improvement and deterioration in specificity over time. A descriptive analysis of ten years of national hospital discharge data for Australia from July 2002-June 2012 was performed. Proportions and percentage change of defined/undefined codes over time was examined. At the intent block level, accidents and assault were the most poorly defined with over 11% undefined in each block. The mechanism blocks for accidents showed a significant deterioration in specificity over time with up to 20% more undefined codes in some mechanisms. Place and activity were poorly defined at the broad block level (43% and 72% undefined respectively). Private hospitals and hospitals in very remote locations recorded the highest proportion of undefined codes. Those aged over 60 years and females had the higher proportion of undefined code usage. This study has identified significant, and worsening, deficiencies in the specificity of coded injury data in several areas. Focal attention is needed to improve the quality of injury data, especially on those identified in this study, to provide the evidence base needed to address the significant burden of injury in the Australian community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As technology continues to become more accessible, miniaturised and diffused into the environment, the potential of wearable technology to impact our lives in significant ways becomes increasingly viable. Wearables afford unique interaction, communication and functional capabilities between users, their environment as well as access to information and digital data. Wearables also demand an inter-disciplinary approach and, depending on the purpose, can be fashioned to transcend cultural, national and spatial boundaries. This paper presents the Cloud Workshop project based on the theme of ‘Wearables and Wellbeing; Enriching connections between citizens in the Asia-Pacific region’, initiated through a cooperative partnership between Queensland University of Technology (QUT), Hong Kong Baptist University (HKBU) and Griffith University (GU). The project was unique due to its inter-disciplinary, inter-cultural and inter-national scope that occurred simultaneously between Australia and Hong Kong.