156 resultados para Circulating microrna
Resumo:
MicroRNAs (miRNAs) are small non-coding RNAs of 20 nt in length that are capable of modulating gene expression post-transcriptionally. Although miRNAs have been implicated in cancer, including breast cancer, the regulation of miRNA transcription and the role of defects in this process in cancer is not well understood. In this study we have mapped the promoters of 93 breast cancer-associated miRNAs, and then looked for associations between DNA methylation of 15 of these promoters and miRNA expression in breast cancer cells. The miRNA promoters with clearest association between DNA methylation and expression included a previously described and a novel promoter of the Hsa-mir-200b cluster. The novel promoter of the Hsa-mir-200b cluster, denoted P2, is located 2 kb upstream of the 5′ stemloop and maps within a CpG island. P2 has comparable promoter activity to the previously reported promoter (P1), and is able to drive the expression of miR-200b in its endogenous genomic context. DNA methylation of both P1 and P2 was inversely associated with miR-200b expression in eight out of nine breast cancer cell lines, and in vitro methylation of both promoters repressed their activity in reporter assays. In clinical samples, P1 and P2 were differentially methylated with methylation inversely associated with miR-200b expression. P1 was hypermethylated in metastatic lymph nodes compared with matched primary breast tumours whereas P2 hypermethylation was associated with loss of either oestrogen receptor or progesterone receptor. Hypomethylation of P2 was associated with gain of HER2 and androgen receptor expression. These data suggest an association between miR-200b regulation and breast cancer subtype and a potential use of DNA methylation of miRNA promoters as a component of a suite of breast cancer biomarkers.
Resumo:
We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10 -11) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10 -9), ANK3 (rs10994359, P = 2.5 × 10 -8) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10 -9).
Resumo:
Ankylosing spondylitis (AS) is the prototypic and most prevalent and debilitating spondyloarthropathy, a group of arthritides where the spine and pelvis are specifically targeted. Unlike many other forms of arthritis in which joint damage is mediated through tissue destruction, in AS uncontrolled bone formation occurs, frequently resulting in joint fusion and consequently significant disability. It is estimated that there are 2.4 million spondyloarthritis sufferers in the U.S., twice as many as rheumatoid arthritis. The pathogenesis of AS is very poorly understood and both genetics and gene expression profiling approaches have been utilized to elucidate the underlying mechanisms and pathways that drive the disease. Using powerful genome-wide association study approaches a number of candidate genes have been found to be associated with AS. However, although such approaches can identify genes that can contribute to the disease process, they do not inform us of the actual changes in gene/cell activity at any point in the disease process. Expression profiling allows us to take a "snapshot" of cellular activity and what gene activity changes are underlying those changes. A number of expression profiling studies have been undertaken in AS, looking at both circulating cells and tissues from affected joints. The results to date have been somewhat disappointing with little consensus on gene activity changes due to the low power of the studies undertaken. Some more recent better powered studies have identified diagnostic expression profiles that do point to a possible role for expression profiling in early AS diagnosis. Future studies will require collaborative approaches to target specific disease stages and sites with larger numbers of samples.
Resumo:
Circulating tumor cells (CTCs) are found in the blood of patients with cancer. Although these cells are rare, they can provide useful information for chemotherapy. However, isolation of these rare cells from blood is technically challenging because they are small in numbers. An integrated microfluidic chip, dubbed as CTC chip, was designed and fabricated for conducting tumor cell isolation. As CTCs usually show multidrug resistance (MDR), the effect of MDR inhibitors on chemotherapeutic drug accumulation in the isolated single tumor cell is measured. As a model of CTC isolation, human prostate tumor cells were mixed with mouse blood cells and the labelfree isolation of the tumor cells was conducted based on cell size difference. The major advantages of the CTC chip are the ability for fast cell isolation, followed by multiple rounds of single-cell measurements, suggesting a potential assay for detecting the drug responses based on the liquid biopsy of cancer patients.
Resumo:
This project established a large and well characterised prospective breast cancer DNA biobank and used this biobank to conduct genetic studies in breast cancer. The thesis presented the results of these high-throughput genotyping studies in two separate Australian Caucasian case-control populations and identified association between three novel genetic variants in microRNA genes and breast cancer risk.
Resumo:
Early detection of melanoma skin cancer, prior to metastatic spread, is critical to improve survival outcomes in patients. This study identified a melanoma-related panel of blood markers that can detect the presence of melanoma with high sensitivity and accuracy which is superior to currently used markers for melanoma progression, recurrence, and survival. Overall, the findings discussed in this thesis may lead to more precise measurement of disease progression allowing for better treatments and an increase in overall survival.
Resumo:
The oncogene MDM4, also known as MDMX or HDMX, contributes to cancer susceptibility and progression through its capacity to negatively regulate a range of genes with tumour-suppressive functions. As part of a recent genome-wide association study it was determined that the A-allele of the rs4245739 SNP (A>C), located in the 3'-UTR of MDM4, is associated with an increased risk of prostate cancer. Computational predictions revealed that the rs4245739 SNP is located within a predicted binding site for three microRNAs (miRNAs): miR-191-5p, miR-887 and miR-3669. Herein, we show using reporter gene assays and endogenous MDM4 expression analyses that miR-191-5p and miR-887 have a specific affinity for the rs4245739 SNP C-allele in prostate cancer. These miRNAs do not affect MDM4 mRNA levels, rather they inhibit its translation in C-allele-containing PC3 cells but not in LNCaP cells homozygous for the A-allele. By analysing gene expression datasets from patient cohorts, we found that MDM4 is associated with metastasis and prostate cancer progression and that targeting this gene with miR-191-5p or miR-887 decreases in PC3 cell viability. This study is the first, to our knowledge, to demonstrate regulation of the MDM4 rs4245739 SNP C-allele by two miRNAs in prostate cancer, and thereby to identify a mechanism by which the MDM4 rs4245739 SNP A-allele may be associated with an increased risk for prostate cancer.
Resumo:
Background MicroRNAs (miRNAs) are important small non-coding RNA molecules that regulate gene expression in cellular processes related to the pathogenesis of cancer. Genetic variation in miRNA genes could impact their synthesis and cellular effects and single nucleotide polymorphisms (SNPs) are one example of genetic variants studied in relation to breast cancer. Studies aimed at identifying miRNA SNPs (miR-SNPs) associated with breast malignancies could lead towards further understanding of the disease and to develop clinical applications for early diagnosis and treatment. Methods We genotyped a panel of 24 miR-SNPs using multiplex PCR and chip-based matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) analysis in two Caucasian breast cancer case control populations (Primary population: 173 cases and 187 controls and secondary population: 679 cases and 301 controls). Association to breast cancer susceptibility was determined using chi-square (X 2 ) and odds ratio (OR) analysis. Results Statistical analysis showed six miR-SNPs to be non-polymorphic and twelve of our selected miR-SNPs to have no association with breast cancer risk. However, we were able to show association between rs353291 (located in MIR145) and the risk of developing breast cancer in two independent case control cohorts (p = 0.041 and p = 0.023). Conclusions Our study is the first to report an association between a miR-SNP in MIR145 and breast cancer risk in individuals of Caucasian background. This finding requires further validation through genotyping of larger cohorts or in individuals of different ethnicities to determine the potential significance of this finding as well as studies aimed to determine functional significance. Keywords: Association analysis; Breast cancer; microRNA; miR-SNPs; MIR145
Resumo:
To identify ‘melanoma-specific’ microRNAs (miRNAs) we used an unbiased microRNA profiling approach to comprehensively study cutaneous melanoma in relation to other solid malignancies, which revealed 233 differentially expressed (≥ 2 fold, p < 0.05) miRNAs. Among the top 20 most significantly different miRNAs was hsa-miR-514a-3p. miR-514a is a member of a cluster of miRNAs (miR-506-514) involved in initiating melanocyte transformation and promotion of melanoma growth. We found miR-514a was expressed in 38/55 (69%) melanoma cell lines but in only 1/34 (3%) other solid cancers. To identify miR-514a regulated targets we conducted a miR-514a-mRNA ‘pull-down’ experiment, which revealed hundreds of genes, including: CTNNB1, CDK2, MC1R, and NF1, previously associated with melanoma. NF1 was selected for functional validation because of its recent implication inacquired resistance to BRAFV600E-targeted therapy. Luciferase-reporter assays confirmed NF1 as a direct target of miR-514a and over-expression of miR-514a in melanoma cell lines inhibited NF1 expression, which correlated with increased survival of BRAFV600E cells treated with PLX4032. These data provide another mechanism for the dysregulation of the MAPK pathway which may contribute to the profound resistance associated with current RAF-targeted therapies.
Resumo:
This paper considers the impossibility of erasing historical policing of LGBTIQ people. Significant events of LGBTIQ policing may appear to fade into the past and we perhaps assume they literally disappear – not discussed, not thought about, and erased from cultural memory. At times we see evidence of an almost nostalgic contemplation about LGBTIQ policing of the past embedded in the notion that we have moved beyond that point to the future, never to return to those histories. If we draw on the work of Foucault, an impossibility becomes apparent. Foucault suggests that discursive traces circulate in discourse and they emerge and re-emerge to shape future discourses. This paper ruminates on a case example, particularly the policing of the Gay and Lesbian Mardi Gras in Sydney, Australia, in 2013. We argue this case demonstrates Foucault’s understanding of discursive history in action: it shows how the remnant traces of historical LGBTIQ policing can re-emerge to profoundly shape LGBTIQ-police relations in the present. In addition to the case, we draw on qualitative data showing how ideas about historical LGBTIQ policing are rehearsed in a consistent cycle of iteration and reiteration through the musings of research participants across three different projects on LGBTIQ policing. We conclude therefore that LGBTIQ policing in the past may never be erased because moments reminiscent of historical LGBTIQ policing are always already circulating and undermining the governmental work of policing organisations in the present.
Resumo:
Head and neck cancer patients often present with advanced metastatic disease resulting in a poor 5-year survival. Therefore, there is a need for non-invasive diagnostic tools that could complement conventional imaging to inform clinicians of patient outcomes and treatment responses. A liquid biopsy addresses this unmet clinical need; a simple peripheral blood draw could provide information about the disseminated disease in terms of circulating tumor cells and circulating tumor DNA. Moreover, detectable tumor DNA in the saliva of head and neck cancer patients could signify the early signs of the disease and present an opportunity for clinical intervention. This review provides an overview of the current literature with regard to the feasibility of such a test in the head and neck cancer field and highlights the need for such a test.
Resumo:
Candidate gene studies have reported CYP19A1 variants to be associated with endometrial cancer and with estradiol (E2) concentrations. We analyzed 2937 single nucleotide polymorphisms (SNPs) in 6608 endometrial cancer cases and 37 925 controls and report the first genome wide-significant association between endometrial cancer and a CYP19A1 SNP (rs727479 in intron 2, P=4.8x10(-11)). SNP rs727479 was also among those most strongly associated with circulating E2 concentrations in 2767 post-menopausal controls (P=7.4x10(-8)). The observed endometrial cancer odds ratio per rs727479 A-allele (1.15, CI=1.11-1.21) is compatible with that predicted by the observed effect on E2 concentrations (1.09, CI=1.03-1.21), consistent with the hypothesis that endometrial cancer risk is driven by E2. From 28 candidate-causal SNPs, 12 co-located with three putative gene-regulatory elements and their risk alleles associated with higher CYP19A1 expression in bioinformatical analyses. For both phenotypes, the associations with rs727479 were stronger among women with a higher BMI (Pinteraction=0.034 and 0.066 respectively), suggesting a biologically plausible gene-environment interaction.
Resumo:
Recent international trends towards urban consolidation, intended to reduce outward urban sprawl by concentrating growth within existing neighbourhoods, can cause contention in cities. Understanding how the mass media represents urban consolidation can lead to more informed and democratic planning practices. This paper employs Social Representations Theory to identify and understand representations of urban consolidation in newspaper media. The theory recognises that the media is a key purveyor of public discourse and can reflect, shape or suppress ideas circulating in society. This novel approach has not previously been applied to understanding social representations of urban consolidation strategies in the mass media. The rapidly growing and changing city of Brisbane, Australia, is utilised as a case study. Brisbane is situated in South East Queensland, the fastest growing region in Australia, and is governed by regional and local planning policies that strongly support increased densities in existing urban areas. Findings from a quantitative textual analysis of 449 articles published in Brisbane newspapers between 2007 and 2014 reveal key clusters and classes of co-occurring words that represent dominant social representations apparent in the newspaper corpus. The paper provides two key conclusions. The first is that social representations occurring in mass media represent an important source of information about ‘common sense’ understandings and evaluations of urban consolidation debates. The second is that urban consolidation is represented as a ultifaceted issue, including interrelated themes of housing,sustainable population growth, investment strategies and the interplay between politics and planning
Resumo:
Transgenic engineering of plants is important in both basic and applied research. However, the expression of a transgene can dwindle over time as the plant's small (s)RNA-guided silencing pathways shut it down. The silencing pathways have evolved as antiviral defence mechanisms, and viruses have co-evolved viral silencing-suppressor proteins (VSPs) to block them. Therefore, VSPs have been routinely used alongside desired transgene constructs to enhance their expression in transient assays. However, constitutive, stable expression of a VSP in a plant usually causes pronounced developmental abnormalities, as their actions interfere with endogenous microRNA-regulated processes, and has largely precluded the use of VSPs as an aid to stable transgene expression. In an attempt to avoid the deleterious effects but obtain the enhancing effect, a number of different VSPs were expressed exclusively in the seeds of Arabidopsis thaliana alongside a three-step transgenic pathway for the synthesis of arachidonic acid (AA), an ω-6 long chain polyunsaturated fatty acid. Results from independent transgenic events, maintained for four generations, showed that the VSP-AA-transformed plants were developmentally normal, apart from minor phenotypes at the cotyledon stage, and could produce 40% more AA than plants transformed with the AA transgene cassette alone. Intriguingly, a geminivirus VSP, V2, was constitutively expressed without causing developmental defects, as it acts on the siRNA amplification step that is not part of the miRNA pathway, and gave strong transgene enhancement. These results demonstrate that VSP expression can be used to protect and enhance stable transgene performance and has significant biotechnological application.
Resumo:
The early and accurate assessment of burns is essential to inform patient treatment regimens; however, this first critical step in clinical practice remains a challenge for specialist burns clinicians worldwide. In this regard, protein biomarkers are a potential adjunct diagnostic tool to assist experienced clinical judgement. Free circulating haemoglobin has previously shown some promise as an indicator of burn depth in a murine animal model. Using blister fluid collected from paediatric burn patients, haemoglobin abundance was measured using semi-quantitative Western blot and immunoassays. Although a trend was observed in which haemoglobin abundance increased with burn wound severity, several patient samples deviated significantly from this trend. Further, it was found that haemoglobin concentration decreased significantly when whole cells, cell debris and fibrinous matrix was removed from the blister fluid by centrifugation; although the relationship to depth was still present. Statistical analyses showed that haemoglobin abundance in the fluid was more strongly related to the time between injury and sample collection and the time taken for spontaneous re-epithelialisation. We hypothesise that prolonged exposure to the blister fluid microenvironment may result in an increased haemoglobin abundance due to erythrocyte lysis, and delayed wound healing