143 resultados para Chemical washing
Resumo:
Automatic-dishwasher detergent is a common household substance which is extremely corrosive and potentially fatal if ingested. In this report, we discuss the implications of the ingestion of automatic-dishwasher detergent in 18 children over a three-year period. Ten of the 18 children gained access to the automatic-dishwasher detergent from the dishwasher on the completion of the washing-cycle, while the remainder ingested the detergent directly from the packet. There was a poor correlation between the presenting signs and symptoms and the subsequent endoscopic finding in the 14 children who underwent endoscopy.
Resumo:
Recently, second-generation (non-vegetable oil) feedstocks for biodiesel production are receiving significant attention due to the cost and social effects connected with utilising food products for the production of energy products. The Beauty leaf tree (Calophyllum inophyllum) is a potential source of non-edible oil for producing second-generation biodiesel because of its suitability for production in an extensive variety of atmospheric condition, easy cultivation, high fruit production rate, and the high oil content in the seed. In this study, oil was extracted from Beauty leaf tree seeds through three different oil extraction methods. The important physical and chemical properties of these extracted Beauty leaf oils were experimentally analysed and compared with other commercially available vegetable oils. Biodiesel was produced using a two-stage esterification process combining of an acid catalysed pre-esterification process and an alkali catalysed transesterification process. Fatty acid methyl ester (FAME) profiles and important physicochemical properties were experimentally measured and estimated using equations based on the FAME analysis. The quality of Beauty leaf biodiesels was assessed and compared with commercially available biodiesels through multivariate data analysis using PROMETHEE-GAIA software. The results show that mechanical extraction using a screw press produces oil at a low cost, however, results in low oil yields compared with chemical oil extraction. High pressure and temperature in the extraction process increase oil extraction performance. On the contrary, this process increases the free fatty acid content in the oil. A clear difference was found in the physical properties of Beauty leaf oils, which eventually affected the oil to biodiesel conversion process. However, Beauty leaf oils methyl esters (biodiesel) were very consistent physicochemical properties and able to meet almost all indicators of biodiesel standards. Overall this study found that Beauty leaf is a suitable feedstock for producing second-generation biodiesel in commercial scale. Therefore, the findings of this study are expected to serve as the basis for further development of Beauty leaf as a feedstock for industrial scale second-generation biodiesel production.
Resumo:
Investigations on the wetting, solubility and chemical composition of plasma polymer thin films provide an insight into the feasibility of implementing these polymeric materials in organic electronics, particularly where wet solution processing is involved. In this study, thin films were prepared from 1-isopropyl-4-methyl-1,4-cyclohexadiene (γ-Terpinene) using radio frequency (RF) plasma polymerization. FTIR showed the polymers to be structurally dissimilar to the original monomer and highly cross-linked, where the loss of original functional groups and the degree of cross-linking increased with deposition power. The polymer surfaces were hydrocarbon-rich, with oxygen present in the form of O–H and C=O functional groups. The oxygen content decreased with deposition power, with films becoming more hydrophobic and, thus, less wettable. The advancing and receding contact angles were investigated, and the water advancing contact angle was found to increase from 63.14° to 73.53° for thin films prepared with an RF power of 10 W to 75 W. The wetting envelopes for the surfaces were constructed to enable the prediction of the surfaces’ wettability for other solvents. The effect of roughness on the wetting behaviour of the films was insignificant. The polymers were determined to resist solubilization in solvents commonly used in the deposition of organic semiconducting layers, including chloroform and chlorobenzene, with higher stability observed in films fabricated at higher RF power.
Resumo:
The development of novel organic polymer thin films is essential for the advancement of many emerging fields including organic electronics and biomedical coatings. In this study, the effect of synthesis conditions, namely radio frequency (rf) deposition power, on the material properties of polyterpenol thin films derived from nonsynthetic environmentally friendly monomer was investigated. At lower deposition powers, the polyterpenol films preserved more of the original monomer constituents, such as hydroxy functional groups; however, they were also softer and more hydrophilic compared to polymers fabricated at higher power. Enhanced monomer fragmentation and consequent reduction in the presence of the polar groups in the structure of the high-power samples reduced their optical band gap value from 2.95 eV for 10 W to 2.64 eV for 100 W. Regardless of deposition power, all samples were found to be optically transparent with smooth, defect-free, and homogenous surfaces.
Resumo:
Peritoneal washing cytology (PWC) is a useful indicator of ovarian surface involvement and peritoneal dissemination by ovarian tumours. It may identify subclinical peritoneal spread and thus provide valuable staging and prognostic information, particularly for non-serous ovarian tumours. The role of PWC as a prognostic indicator for endometrial carcinoma is less clear, due in part to the questionable significance of identifying endometrial tumour cells in the peritoneum. Detection of metastatic carcinoma in PWC is based on recognition of non-mesothelial cell characteristics, however a number of conditions such as reactive mesothelial cells, endometriosis and endosalpingiosis may mimic this appearance. Cells from these conditions may have a similar presentation in PWC to that of serous borderline tumours and low grade serous carcinoma. The presence of cilia, lack of single atypical cells, prominent cytoplasmic vacuolation, marked nuclear atypia or two distinct cell populations are features favouring a benign process. Attention to these features along with close correlation with clinical history and the results of surgical pathology should help avoid errors. Additional assistance may be provided by the use of cell blocks and special stains.
Resumo:
The research project developed a quantitative approach to assess the risk to human health from heavy metals and polycyclic aromatic hydrocarbons in urban stormwater based on traffic and land use factors. The research outcomes are expected to strengthen the scientifically robust management and reuse of urban stormwater. The innovative methodology developed can be applied to evaluate human health risk in relation to toxic chemical pollutants in urban stormwater runoff and for the development of effective risk mitigation strategies.
Resumo:
The choice of ethanol (C2H5OH) as carbon source in the Chemical Vapor Deposition (CVD) of graphene on copper foils can be considered as an attractive alternative among the commonly used hydrocarbons, such as methane (CH4) [1]. Ethanol, a safe, low cost and easy handling liquid precursor, offers fast and efficient growth kinetics with the synthesis of fullyformed graphene films in just few seconds [2]. In previous studies of graphene growth from ethanol, various research groups explored temperature ranges lower than 1000 °C, usually reported for methane-assisted CVD. In particular, the 650–850 °C and 900 °C ranges were investigated, respectively for 5 and 30 min growth time [3, 4]. Recently, our group reported the growth of highly-crystalline, few-layer graphene by ethanol-CVD in hydrogen flow (1– 100 sccm) at high temperatures (1000–1070 °C) using growth times typical of CH4-assisted synthesis (10–30 min) [5]. Furthermore, a synthesis time between 20 and 60 s in the same conditions was explored too. In such fast growth we demonstrated that fully-formed graphene films can be grown by exposing copper foils to a low partial pressure of ethanol (up to 2 Pa) in just 20 s [6] and we proposed that the rapid growth is related to an increase of the Cu catalyst efficiency due weak oxidizing nature of ethanol. Thus, the employment of such liquid precursor, in small concentrations, together with a reduced time of growth and very low pressure leads to highly efficient graphene synthesis. By this way, the complete coverage of a copper catalyst surface with high spatial uniformity can be obtained in a considerably lower time than when using methane.
Resumo:
In3+ was used as dopant for BaZrO3 proton conductor and 30 at%-doped BaZrO3 samples (BaZr0.7In 0.3O3-δ, BZI) were prepared as electrolyte materials for proton-conducting solid oxide fuel cells (SOFCs). The BZI material showed a much improved sinteractivity compared with the conventional Y-doped BaZrO 3. The BZI pellets reached almost full density after sintering at 1600 °C for 10 h, whereas the Y-doped BaZrO3 samples still remained porous under the same sintering conditions. The conductivity measurements indicated that BZI pellets showed smaller bulk but improved grain boundary proton conductivity, when compared with Y-doped BaZrO3 samples. A total proton conductivity of 1.7 × 10-3 S cm -1 was obtained for the BZI sample at 700 °C in wet 10% H 2 atmosphere. The BZI electrolyte material also showed adequate chemical stability against CO2 and H2O, which is promising for application in fuel cells.