206 resultados para Capacities
Resumo:
Opportunistic bacterial infections of the nasal cavity could potentially lead to infection of the brain if the olfactory or trigeminal nerves are colonised. The olfactory nerve may be a more susceptible route because primary olfactory neurons are in direct contact with the external environment. Peripheral glia are known to be able to phagocytose some species of bacteria and may therefore provide a defence mechanism against bacterial infection. As the nasal cavity is frequently exposed to bacterial infections, we hypothesised that the olfactory and trigeminal nerves within the nasal cavity could be subjected to bacterial colonisation and that the olfactory ensheathing cells and Schwann cells may be involved in responding to the bacterial invasion. We have examined the ability of mouse OECs and Schwann cells from the trigeminal nerve and dorsal root ganglia to phagocytose Escherichia coli and Burkholderia thailandensis in vitro. We found that all three sources of glia were equally able to phagocytose E. coli with 75-85% of glia having phagocytosed bacteria within 24h. We also show that human OECs phagocytosed E. coli. In contrast, the mouse OECs and Schwann cells had little capacity to phagocytose B. thailandensis. Thus subtypes of peripheral glia have similar capacities for phagocytosis of bacteria but show selective capacity for the two different species of bacteria that were examined. These results have implications for the understanding of the mechanisms of bacterial infections as well as for the use of glia for neural repair therapies.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB) subject to web crippling actions (ETF and ITF). Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies were conducted to assess the web crippling behaviour and strengths of LSBs. Twenty eight web crippling tests were conducted and the results were compared with the current AS/NZS 4600[1] and AISI S100 [2]design equations. Comparison of the ultimate web crippling capacities from tests showed that AS/NZS 4600[1] and AISI S100 [2] design equations are unconservative for LSB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs. Suitable design rules were also developed under the DSM format.
Resumo:
LiteSteel beam (LSB) is a cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It is commonly used as floor joists and bearers in residential, industrial and commercial buildings. Design of the LSB is governed by the Australian cold-formed steel structures code, AS/NZS 4600. Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, currently available design equations for common cold-formed sections are not directly applicable to the LSB. Many research studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions and predominant shear actions. To date, however, no investigation has been conducted into the strength of LSB sections under combined bending and shear actions. Hence experimental and numerical studies were conducted to assess the combined bending and shear behaviour of LSBs. Finite element models of LSBs were developed to simulate their combined bending and shear behaviour and strength of LSBs. They were then validated by comparing the results with available experimental test results and used in a detailed parametric study. The results from experimental and finite element analyses were compared with current AS/NZS 4600 and AS 4100 design rules. Both experimental and numerical studies show that the AS/NZS 4600 design rule based on circular interaction equation is conservative in predicting the combined bending and shear capacities of LSBs. This paper presents the details of the numerical studies of LSBs and the results. In response to the inadequacies of current approaches to designing LSBs for combined bending and shear, two lower bound design equations are proposed in this paper.
Resumo:
Finite element method (FEM) relies on an approximate function to fit into a governing equation and minimizes the residual error in the integral sense in order to generate solutions for the boundary value problems (nodal solutions). Because of this FEM does not show simultaneous capacities for accurate displacement and force solutions at node and along an element, especially when under the element loads, which is of much ubiquity. If the displacement and force solutions are strictly confined to an element’s or member’s ends (nodal response), the structural safety along an element (member) is inevitably ignored, which can definitely hinder the design of a structure for both serviceability and ultimate limit states. Although the continuous element deflection and force solutions can be transformed into the discrete nodal solutions by mesh refinement of an element (member), this setback can also hinder the effective and efficient structural assessment as well as the whole-domain accuracy for structural safety of a structure. To this end, this paper presents an effective, robust, applicable and innovative approach to generate accurate nodal and element solutions in both fields of displacement and force, in which the salient and unique features embodies its versatility in applications for the structures to account for the accurate linear and second-order elastic displacement and force solutions along an element continuously as well as at its nodes. The significance of this paper is on shifting the nodal responses (robust global system analysis) into both nodal and element responses (sophisticated element formulation).
Resumo:
Self-regulation refers to our individual capacities to regulate our behaviours, emotions, and thoughts, with these skills developing rapidly across early childhood. This thesis examined sleep, emotional, and cognitive regulation development, and related parental influences, for children participating in the Longitudinal Study of Australian Children. Important longitudinal associations among children's self-regulation, maternal mental health, parenting, and later behaviour problems for children were also investigated. A unique contribution of this research was a prevalence estimate of early childhood self-regulation problems in Australian children that was documented for the first time.
Resumo:
Currently, open circuit Bayer refineries pump seawater directly into their operations to neutralize the caustic fraction of the Bayer residue. The resulting supernatant has a reduced pH and is pumped back to the marine environment. This investigation has assessed modified seawater sources generated from nanofiltration processes to compare their relative capacities to neutralize bauxite residues. An assessment of the chemical stability of the neutralization products, neutralization efficiency, discharge water quality, bauxite residue composition, and associated economic benefits have been considered to determine the most preferable seawater filtration process based on implementation costs, savings to operations and environmental benefits. The mechanism of neutralization for each technology was determined to be predominately due to the formation of Bayer hydrotalcite and calcium carbonate, however variations in neutralization capacity and efficiencies have been observed. The neutralization efficiency of each feed source has been found to be dependent on the concentration of magnesium, aluminium, calcium and carbonate. Nanofiltered seawater with approximately double the amount of magnesium and calcium required half the volume of seawater to achieve the same degree of neutralization. These studies have revealed that multiple neutralization steps occur throughout the process using characterization techniques such as X-ray diffraction (XRD), infrared (IR) spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES).
Resumo:
Currently, open circuit Bayer refineries pump seawater directly into their operations to neutralise the caustic fraction of the Bayer residue. The resulting supernatant has a reduced pH and is pumped back to the marine environment. This investigation has assessed modified seawater sources generated from different ion filtration processes to compare their relative capacities to neutralise bauxite residues. An assessment of the chemical stability of the neutralisation products, neutralisation efficiency, discharge water quality, bauxite residue composition, and associated economic benefits have been considered to determine the most preferable seawater filtration process based on implementation costs, savings to operations and environmental benefits. The mechanism of neutralisation for each technology was determined to be predominately due to the formation of Bayer hydrotalcite and calcium carbonate, however variations in neutralisation capacity and efficiencies have been observed. The neutralisation efficiency of each feed source has been found to be dependent on the concentration of magnesium, aluminium, calcium and carbonate. These studies have revealed that multiple neutralisation steps occur throughout the process. Environmental, economic and social advantages and disadvantages of the different filtration technologies have been explored to determine the most sustainable method for the neutralisation of bauxite residues. The relative degree of “green” associated with nanofiltered seawater and reverse osmosis filtered seawater are discussed.
Resumo:
A statistical approach is used in the design of a battery-supercapacitor energy storage system for a wind farm. The design exploits the technical merits of the two energy storage mediums, in terms of the differences in their specific power and energy densities, and their ability to accommodate different rates of change in the charging/discharging powers. By treating the input wind power as random and using a proposed coordinated power flows control strategy for the battery and the supercapacitor, the approach evaluates the energy storage capacities, the corresponding expected life cycle cost/year of the storage mediums, and the expected cost/year of unmet power dispatch. A computational procedure is then developed for the design of a least-cost/year hybrid energy storage system to realize wind power dispatch at a specified confidence level.
Resumo:
This chapter examines the process of “transformative learning” for the 2008 cohort of the St. Thomas More College–Intercordia Canada (STM/IC) international community service-learning program. My primary data comes from the eight students who were part of that cohort, when I was their program coordinator. That data later became the heart of my Master’s thesis and was approved by the Research Ethics Office of the University of Saskatchewan. In this chapter I focus on three of those eight participants, outlining the critical elements of their experiences that were conducive to their transformative learning. To be sure, my sample size is too small to draw generalizable conclusions, but the quality of information I received from these students and their colleagues, coupled with the follow-up conversations I had with other educators and with the accompanying literature, supports the value of reflecting at length here about these students’ comments. I have chosen to highlight the experiences of these three participants because together they provide a range of experiences that best enables an analysis of the conditions that both did and did not lead to transformative learning. This case study suggests that transformative learning occurs through: the dynamics of vulnerability, a discovery of persisting differences within inter-personal relationships, and an experience of welcome and hospitality in the host environment. In contrast to other studies that focus on the enhanced capacities, skills and subsequent employability of participants through international education, transformative learning for these students required a relinquishing of securities, a disorientation and critical interrogation of the self, and enhanced receptivity to the newly recognized Other. Moreover, consistent with the critical-humanistic educational philosophy shared in different ways by the participants of the STM/IC program, this study suggests that international community service-learning can most responsibly contribute to good global citizenship through the construction of relationships of solidarity across difference.
Resumo:
This paper addresses of the advanced computational technique of steel structures for both simulation capacities simultaneously; specifically, they are the higher-order element formulation with element load effect (geometric nonlinearities) as well as the refined plastic hinge method (material nonlinearities). This advanced computational technique can capture the real behaviour of a whole second-order inelastic structure, which in turn ensures the structural safety and adequacy of the structure. Therefore, the emphasis of this paper is to advocate that the advanced computational technique can replace the traditional empirical design approach. In the meantime, the practitioner should be educated how to make use of the advanced computational technique on the second-order inelastic design of a structure, as this approach is the future structural engineering design. It means the future engineer should understand the computational technique clearly; realize the behaviour of a structure with respect to the numerical analysis thoroughly; justify the numerical result correctly; especially the fool-proof ultimate finite element is yet to come, of which is competent in modelling behaviour, user-friendly in numerical modelling and versatile for all structural forms and various materials. Hence the high-quality engineer is required, who can confidently manipulate the advanced computational technique for the design of a complex structure but not vice versa.
Resumo:
SupaCee section is one of the cold-formed steel members which is increasingly used in the construction sector. It is characterized by unique ribbed web and curved lip elements, and is claimed to be more economical with extra strength than the traditional channel sections. SupaCee sections are widely used in Australia as floor joists, bearers, purlins and girts. Many experimental and numerical studies have been carried out to evaluate the behaviour and design of conventional channel beams subject to web crippling. To date, however, no investigation has been conducted into the web crippling behaviour and strength of SupaCee sections. Current cold-formed steel design equations do not include any design procedures for SupaCee sections. Hence experimental studies were conducted to assess the web crippling behaviour and strengths of SupaCee sections under ETF and ITF load cases. Thirty six web crippling tests were conducted and the capacity results were compared with the predictions from the AS/NZS 4600 and AISI design rules developed for conventional channel sections. Comparison of ultimate web crippling capacities from tests showed that AS/NZS 4600 and AISI design equations are unconservative for SupaCee sections under ETF load case, but are overly conservative for ITF load case. Hence new equations were proposed to determine the web crippling capacities of SupaCee sections based on the experimental results from this study. Suitable design rules were also developed within the direct strength method format. This paper presents the details of this experimental study of SupaCee sections subject to web crippling and the results.
Resumo:
Detection of faults in roller element bearing is a topic widely discussed in the scientific field. Bearings diagnostics is usually performed by analyzing experimental signals, almost always vibration signals, measured during operation. A number of signal processing techniques have been proposed and applied to measured vibrations. The diagnostic effectiveness of the techniques depends on their capacities and on the environmental conditions (i.e. environmental noise). The current trend, especially from an industrial point of view, is to couple the prognostics to the diagnostics. The realization of a prognostic procedure require the definition of parameters able to describe the bearing condition during its operation. Monitoring the values of these parameters during time allows to define their trends depending on the progress of the wear. In this way, a relation between the variation of the selected parameters and the wear progress, useful for diagnostics and prognostics of bearings in real industrial applications, can be established. In this paper, a laboratory test-rig designed to perform endurance tests on roller element bearing is presented. Since the test-rig has operated for a short time, only some preliminary available results are discussed.
Resumo:
A hybrid energy storage system (HESS) consisting of battery and supercapacitor (SC) is proposed for use in a wind farm in order to achieve power dispatchability. In the designed scheme, the rate of charging/discharging powers of the battery is controlled while the faster wind power transients are diverted to the SC. This enhances the lifetime of the battery. Furthermore, by taking into consideration the random nature of the wind power, a statistical design method is developed to determine the capacities of the HESS needed to achieve specified confidence level in the power dispatch. The proposed approach is useful in the planning of the wind farm-HESS scheme and the coordination of the power flows between the battery and SC.
Resumo:
Organic surfactants modified clay minerals are usually used as adsorbents for hydrophobic organic contaminants remediation; this work however has shown organoclays can also work as adsorbents for hydrophilic anionic contaminant immobilization. Organoclays were prepared based on halloysite, kaolinite and bentonite and used for nitrate adsorption, which are significant for providing mechanism for the adsorption of anionic contaminants from waste water. XRD was used to characterize unmodified and surfactants modified clay minerals. Thermogravimetric analysis (TG) was used to determine the thermal stability and actual loading of surfactant molecules. Ion chromatography (IC) was used to determine changes of nitrate concentration before and after adsorption by these organoclays. These organoclays showed different removal capacities for anionic ions from water and adsorption mechanism was investigated.