142 resultados para CONTINUOUS-VARIABLES
Resumo:
A class of growth models incorporating time-dependent factors and stochastic perturbations are introduced. The proposed model includes the existing growth models used in fisheries as special cases. Particular attention is given to growth of a population (in average weight or length) from which observations are taken randomly each time and the analysis of tag-recapture data. Two real data sets are used for illustration: (a) to estimate the seasonal effect and population density effect on growth of farmed prawn (Penaeus monodon) from weight data and (b) to assess the effect of tagging on growth of barramundi (Lates calcarifer)
Resumo:
The von Bertalanffy growth model is extended to incorporate explanatory variables. The generalized model includes the switched growth model and the seasonal growth model as special cases, and can also be used to assess the tagging effect on growth. Distribution-free and consistent estimating functions are constructed for estimation of growth parameters from tag-recapture data in which age at release is unknown. This generalizes the work of James (1991, Biometrics 47 1519-1530) who considered the classical model and allowed for individual variability in growth. A real dataset from barramundi (Lates calcarifer) is analysed to estimate the growth parameters and possible effect of tagging on growth.
Resumo:
Australia is the world’s third largest exporter of raw sugar after Brazil and Thailand, with around $2.0 billion in export earnings. Transport systems play a vital role in the raw sugar production process by transporting the sugarcane crop between farms and mills. In 2013, 87 per cent of sugarcane was transported to mills by cane railway. The total cost of sugarcane transport operations is very high. Over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. A cane railway network mainly involves single track sections and multiple track sections used as passing loops or sidings. The cane railway system performs two main tasks: delivering empty bins from the mill to the sidings for filling by harvesters; and collecting the full bins of cane from the sidings and transporting them to the mill. A typical locomotive run involves an empty train (locomotive and empty bins) departing from the mill, traversing some track sections and delivering bins at specified sidings. The locomotive then, returns to the mill, traversing the same track sections in reverse order, collecting full bins along the way. In practice, a single track section can be occupied by only one train at a time, while more than one train can use a passing loop (parallel sections) at a time. The sugarcane transport system is a complex system that includes a large number of variables and elements. These elements work together to achieve the main system objectives of satisfying both mill and harvester requirements and improving the efficiency of the system in terms of low overall costs. These costs include delay, congestion, operating and maintenance costs. An effective cane rail scheduler will assist the traffic officers at the mill to keep a continuous supply of empty bins to harvesters and full bins to the mill with a minimum cost. This paper addresses the cane rail scheduling problem under rail siding capacity constraints where limited and unlimited siding capacities were investigated with different numbers of trains and different train speeds. The total operating time as a function of the number of trains, train shifts and a limited number of cane bins have been calculated for the different siding capacity constraints. A mathematical programming approach has been used to develop a new scheduler for the cane rail transport system under limited and unlimited constraints. The new scheduler aims to reduce the total costs associated with the cane rail transport system that are a function of the number of bins and total operating costs. The proposed metaheuristic techniques have been used to find near optimal solutions of the cane rail scheduling problem and provide different possible solutions to avoid being stuck in local optima. A numerical investigation and sensitivity analysis study is presented to demonstrate that high quality solutions for large scale cane rail scheduling problems are obtainable in a reasonable time. Keywords: Cane railway, mathematical programming, capacity, metaheuristics
Resumo:
Security models for two-party authenticated key exchange (AKE) protocols have developed over time to capture the security of AKE protocols even when the adversary learns certain secret values. Increased granularity of security can be modelled by considering partial leakage of secrets in the manner of models for leakage-resilient cryptography, designed to capture side-channel attacks. In this work, we use the strongest known partial-leakage-based security model for key exchange protocols, namely continuous after-the-fact leakage eCK (CAFL-eCK) model. We resolve an open problem by constructing the first concrete two-pass leakage-resilient key exchange protocol that is secure in the CAFL-eCK model.
Resumo:
Aim An effective catch in sculling is a critical determinant of boat velocity. This study used rowers’ performance-based judgments to compare three measures of catch slip efficiency. Two questions were addressed: (1) would rower-judged Yes strokes be faster than No strokes? and (2) which method of quantifying catch slip best reflected these judgements? Methods Eight single scullers performed two 10-min blocks of sub maximal on-water rowing at 20 strokes per minute. Every 30 s, rowers reported either Yes or No about the quality of their stroke at the catch. Results It was found that Yes strokes identified by rowers had, on average, a moderate effect advantage over No strokes with a standardised effect size of 0.43. In addition, a quicker time to positive acceleration best reflected the change in performance; where the standardised mean difference score of 0.57 for time to positive acceleration was larger than the scores of 0.47 for time to PowerLine force, and 0.35 for time to 30% peak pin force catch slip measures. For all eight rowers, Yes strokes corresponded to time to positive acceleration occurring earlier than No strokes. Conclusion Rower judgements about successful strokes was linked to achieving a quicker time to positive acceleration, and may be of the most value in achieving a higher average boat velocity.
Resumo:
The continuous mutual transfer of knowledge and skills within work teams is increasingly important for organizational practice. According to the situational and experience-based approaches of applied learning research, certain individual and social prerequisites have to be met for successful learning in teams. In a field study at an automobile production site, it was investigated which personal characteristics of multipliers and which characteristics of teams are related to the performance of multipliers in 31 teams with 291 coworkers. Using multi-level analyses (HLM), the amount of variance explained by the predictor variables in teaching success of multipliers and learning success of coworkers was examined. Results showed that multipliers' conscientiousness and team cohesion were related to teaching success of multipliers; extraversion and team cohesion were related to the learning success of coworkers. In closing, the scientific and practical implications for the investigation and promotion of work-based learning processes in teams are discussed.
Resumo:
High Intensity Exercise (HIE) stimulates greater physiological remodeling when compared to workload matched low-moderate intensity exercise. This study utilized an untargeted metabolomics approach to examine the metabolic perturbations that occur following two workload matched supramaximal low volume HIE trials. In a randomized order, 7 untrained males completed two exercise protocols separated by one week; 1) HIE150%: 30 x 20s cycling at 150% VO2peak, 40s passive rest; 2) HIE300%: 30 x 10s cycling at 300% VO2peak, 50 s passive rest. Total exercise duration was 30 minutes for both trials. Blood samples were taken at rest, during and immediately following exercise and at 60 minutes post exercise. Gas chromatography-mass spectrometry (GC-MS) analysis of plasma identified 43 known metabolites of which 3 demonstrated significant fold changes (HIE300% compared to the HIE150% value) during exercise, 14 post exercise and 23 at the end of the recovery period. Significant changes in plasma metabolites relating to lipid metabolism [fatty acids: dodecanoate (p=0.042), hexadecanoate (p=0.001), octadecanoate (p=0.001)], total cholesterol (p=0.001), and glycolysis [lactate (p=0.018)] were observed following exercise and during the recovery period. The HIE300% protocol elicited greater metabolic changes relating to lipid metabolism and glycolysis when compared to HIE150% protocol. These changes were more pronounced throughout the recovery period rather than during the exercise bout itself. Data from the current study demonstrate the use of metabolomics to monitor intensity-dependent changes in multiple metabolic pathways following exercise. The small sample size indicates a need for further studies in a larger sample cohort to validate these findings.