299 resultados para CLOSED ORBIT
Resumo:
This paper describes modelling, estimation and control of the horizontal translational motion of an open-source and cost effective quadcopter — the MikroKopter. We determine the dynamics of its roll and pitch attitude controller, system latencies, and the units associated with the values exchanged with the vehicle over its serial port. Using this we create a horizontal-plane velocity estimator that uses data from the built-in inertial sensors and an onboard laser scanner, and implement translational control using a nested control loop architecture. We present experimental results for the model and estimator, as well as closed-loop positioning.
Resumo:
Resilient organised crime groups survive and prosper despite law enforcement activity, criminal competition and market forces. Corrupt police networks, like any other crime network, must contain resiliency characteristics if they are to continue operation and avoid being closed down through detection and arrest of their members. This paper examines the resilience of a large corrupt police network, namely The Joke which operated in the Australian state of Queensland for a number of decades. The paper uses social network analysis tools to determine the resilient characteristics of the network. This paper also assumes that these characteristics will be different to those of mainstream organised crime groups because the police network operates within an established policing agency rather than as an independent entity hiding within the broader community.
Resumo:
There is a growing need for parametric design software that communicates building performance feedback in early architectural exploration to support decision-making. This paper examines how the circuit of design and analysis process can be closed to provide active and concurrent feedback between architecture and services engineering domains. It presents the structure for an openly customisable design system that couples parametric modelling and energy analysis software to allow designers to assess the performance of early design iterations quickly. Finally, it discusses how user interactions with the system foster information exchanges that facilitate the sharing of design intelligence across disciplines.
Resumo:
Introduction: An observer, looking sideways from a moving vehicle, while wearing a neutral density filter over one eye, can have a distorted perception of speed, known as the Enright phenomenon. The purpose of this study was to determine how the Enright phenomenon influences driving behaviour. Methods: A geometric model of the Enright phenomenon was developed. Ten young, visually normal, participants (mean age = 25.4 years) were tested on a straight section of a closed driving circuit and instructed to look out of the right side of the vehicle and drive at either 40 Km/h or 60 Km/h under the following binocular viewing conditions: with a 0.9 ND filter over the left eye (leading eye); 0.9 ND filter over the right eye (trailing eye); 0.9 ND filters over both eyes, and with no filters over either eye. The order of filter conditions was randomised and the speed driven recorded for each condition. Results: Speed judgments did not differ significantly between the two baseline conditions (no filters and both eyes filtered) for either speed tested. For the baseline conditions, when subjects were asked to drive at 60 Km/h they matched this speed well (61 ± 10.2 Km/h) but drove significantly faster than requested (51.6 ± 9.4 Km/h) when asked to drive at 40 Km/h. Subjects significantly exceeded baseline speeds by 8.7± 5.0 Km/h, when the trailing eye was filtered and travelled slower than baseline speeds by 3.7± 4.6 Km/h when the leading eye was filtered. Conclusions: This is the first quantitative study demonstrating how the Enright effect can influence perceptions of driving speed, and demonstrates that monocular filtering of an eye can significantly impact driving speeds, albeit to a lesser extent than predicted by geometric models of the phenomenon.
Resumo:
Bicycling at night is more dangerous than in the daytime and poor conspicuity is likely to be a contributing factor. The use of reflective markings on a pedestrian’s major joints to facilitate the perception of biological motion has been shown to greatly enhance pedestrian conspicuity at night, but few corresponding data exist for bicyclists. Twelve younger and twelve older participants drove around a closed-road circuit at night and indicated when they first saw a bicyclist who wore black clothing either alone, or together with a reflective bicycling vest, or a vest plus ankle and knee reflectors. The bicyclist pedaled in place on a bicycle that had either a static or flashing light, or no light on the handlebars. Bicyclist clothing significantly affected conspicuity; drivers responded to bicyclists wearing the vest plus ankle and knee reflectors at significantly longer distances than when the bicyclist wore the vest alone or black clothing without a vest. Older drivers responded to bicyclists less often and at shorter distances than younger drivers. The presence of a bicycle light, whether static or flashing, did not enhance the conspicuity of the bicyclist; this may result in bicyclists who use a bicycle light being overconfident of their own conspicuity at night. The implications of our findings are that ankle and knee markings are a simple and very effective approach for enhancing bicyclist conspicuity at night.
Resumo:
Video surveillance systems using Closed Circuit Television (CCTV) cameras, is one of the fastest growing areas in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. This work attempts to address these problems by proposing an automatic suspicious behaviour detection which utilises contextual information. The utilisation of contextual information is done via three main components: a context space model, a data stream clustering algorithm, and an inference algorithm. The utilisation of contextual information is still limited in the domain of suspicious behaviour detection. Furthermore, it is nearly impossible to correctly understand human behaviour without considering the context where it is observed. This work presents experiments using video feeds taken from CAVIAR dataset and a camera mounted on one of the buildings Z-Block) at the Queensland University of Technology, Australia. From these experiments, it is shown that by exploiting contextual information, the proposed system is able to make more accurate detections, especially of those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information gives critical feedback to the system designers to refine the system.
Resumo:
Computer resource allocation represents a significant challenge particularly for multiprocessor systems, which consist of shared computing resources to be allocated among co-runner processes and threads. While an efficient resource allocation would result in a highly efficient and stable overall multiprocessor system and individual thread performance, ineffective poor resource allocation causes significant performance bottlenecks even for the system with high computing resources. This thesis proposes a cache aware adaptive closed loop scheduling framework as an efficient resource allocation strategy for the highly dynamic resource management problem, which requires instant estimation of highly uncertain and unpredictable resource patterns. Many different approaches to this highly dynamic resource allocation problem have been developed but neither the dynamic nature nor the time-varying and uncertain characteristics of the resource allocation problem is well considered. These approaches facilitate either static and dynamic optimization methods or advanced scheduling algorithms such as the Proportional Fair (PFair) scheduling algorithm. Some of these approaches, which consider the dynamic nature of multiprocessor systems, apply only a basic closed loop system; hence, they fail to take the time-varying and uncertainty of the system into account. Therefore, further research into the multiprocessor resource allocation is required. Our closed loop cache aware adaptive scheduling framework takes the resource availability and the resource usage patterns into account by measuring time-varying factors such as cache miss counts, stalls and instruction counts. More specifically, the cache usage pattern of the thread is identified using QR recursive least square algorithm (RLS) and cache miss count time series statistics. For the identified cache resource dynamics, our closed loop cache aware adaptive scheduling framework enforces instruction fairness for the threads. Fairness in the context of our research project is defined as a resource allocation equity, which reduces corunner thread dependence in a shared resource environment. In this way, instruction count degradation due to shared cache resource conflicts is overcome. In this respect, our closed loop cache aware adaptive scheduling framework contributes to the research field in two major and three minor aspects. The two major contributions lead to the cache aware scheduling system. The first major contribution is the development of the execution fairness algorithm, which degrades the co-runner cache impact on the thread performance. The second contribution is the development of relevant mathematical models, such as thread execution pattern and cache access pattern models, which in fact formulate the execution fairness algorithm in terms of mathematical quantities. Following the development of the cache aware scheduling system, our adaptive self-tuning control framework is constructed to add an adaptive closed loop aspect to the cache aware scheduling system. This control framework in fact consists of two main components: the parameter estimator, and the controller design module. The first minor contribution is the development of the parameter estimators; the QR Recursive Least Square(RLS) algorithm is applied into our closed loop cache aware adaptive scheduling framework to estimate highly uncertain and time-varying cache resource patterns of threads. The second minor contribution is the designing of a controller design module; the algebraic controller design algorithm, Pole Placement, is utilized to design the relevant controller, which is able to provide desired timevarying control action. The adaptive self-tuning control framework and cache aware scheduling system in fact constitute our final framework, closed loop cache aware adaptive scheduling framework. The third minor contribution is to validate this cache aware adaptive closed loop scheduling framework efficiency in overwhelming the co-runner cache dependency. The timeseries statistical counters are developed for M-Sim Multi-Core Simulator; and the theoretical findings and mathematical formulations are applied as MATLAB m-file software codes. In this way, the overall framework is tested and experiment outcomes are analyzed. According to our experiment outcomes, it is concluded that our closed loop cache aware adaptive scheduling framework successfully drives co-runner cache dependent thread instruction count to co-runner independent instruction count with an error margin up to 25% in case cache is highly utilized. In addition, thread cache access pattern is also estimated with 75% accuracy.
Resumo:
The Lingodroids are a pair of mobile robots that evolve a language for places and relationships between places (based on distance and direction). Each robot in these studies has its own understanding of the layout of the world, based on its unique experiences and exploration of the environment. Despite having different internal representations of the world, the robots are able to develop a common lexicon for places, and then use simple sentences to explain and understand relationships between places even places that they could not physically experience, such as areas behind closed doors. By learning the language, the robots are able to develop representations for places that are inaccessible to them, and later, when the doors are opened, use those representations to perform goal-directed behavior.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term- based ones in describing user preferences, but many experiments do not support this hypothesis. This research presents a promising method, Relevance Feature Discovery (RFD), for solving this challenging issue. It discovers both positive and negative patterns in text documents as high-level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the high-level features. The thesis also introduces an adaptive model (called ARFD) to enhance the exibility of using RFD in adaptive environment. ARFD automatically updates the system's knowledge based on a sliding window over new incoming feedback documents. It can efficiently decide which incoming documents can bring in new knowledge into the system. Substantial experiments using the proposed models on Reuters Corpus Volume 1 and TREC topics show that the proposed models significantly outperform both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and other pattern-based methods.
Resumo:
With the growing number of XML documents on theWeb it becomes essential to effectively organise these XML documents in order to retrieve useful information from them. A possible solution is to apply clustering on the XML documents to discover knowledge that promotes effective data management, information retrieval and query processing. However, many issues arise in discovering knowledge from these types of semi-structured documents due to their heterogeneity and structural irregularity. Most of the existing research on clustering techniques focuses only on one feature of the XML documents, this being either their structure or their content due to scalability and complexity problems. The knowledge gained in the form of clusters based on the structure or the content is not suitable for reallife datasets. It therefore becomes essential to include both the structure and content of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both these kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. The overall objective of this thesis is to address these issues by: (1) proposing methods to utilise frequent pattern mining techniques to reduce the dimension; (2) developing models to effectively combine the structure and content of XML documents; and (3) utilising the proposed models in clustering. This research first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. A clustering framework with two types of models, implicit and explicit, is developed. The implicit model uses a Vector Space Model (VSM) to combine the structure and the content information. The explicit model uses a higher order model, namely a 3- order Tensor Space Model (TSM), to explicitly combine the structure and the content information. This thesis also proposes a novel incremental technique to decompose largesized tensor models to utilise the decomposed solution for clustering the XML documents. The proposed framework and its components were extensively evaluated on several real-life datasets exhibiting extreme characteristics to understand the usefulness of the proposed framework in real-life situations. Additionally, this research evaluates the outcome of the clustering process on the collection selection problem in the information retrieval on the Wikipedia dataset. The experimental results demonstrate that the proposed frequent pattern mining and clustering methods outperform the related state-of-the-art approaches. In particular, the proposed framework of utilising frequent structures for constraining the content shows an improvement in accuracy over content-only and structure-only clustering results. The scalability evaluation experiments conducted on large scaled datasets clearly show the strengths of the proposed methods over state-of-the-art methods. In particular, this thesis work contributes to effectively combining the structure and the content of XML documents for clustering, in order to improve the accuracy of the clustering solution. In addition, it also contributes by addressing the research gaps in frequent pattern mining to generate efficient and concise frequent subtrees with various node relationships that could be used in clustering.
Resumo:
For many people, a relatively large proportion of daily exposure to a multitude of pollutants may occur inside an automobile. A key determinant of exposure is the amount of outdoor air entering the cabin (i.e. air change or flow rate). We have quantified this parameter in six passenger vehicles ranging in age from 18 years to <1 year, at three vehicle speeds and under four different ventilation settings. Average infiltration into the cabin with all operable air entry pathways closed was between 1 and 33.1 air changes per hour (ACH) at a vehicle speed of 60 km/h, and between 2.6 and 47.3 ACH at 110 km/h, with these results representing the most (2005 Volkswagen Golf) and least air-tight (1989 Mazda 121) vehicles, respectively. Average infiltration into stationary vehicles parked outdoors varied between ~0 and 1.4 ACH and was moderately related to wind speed. Measurements were also performed under an air recirculation setting with low fan speed, while airflow rate measurements were conducted under two non-recirculate ventilation settings with low and high fan speeds. The windows were closed in all cases, and over 200 measurements were performed. The results can be applied to estimate pollutant exposure inside vehicles.
Resumo:
In keeping with the proliferation of free software development initiatives and the increased interest in the business process management domain, many open source workflow and business process management systems have appeared during the last few years and are now under active development. This upsurge gives rise to two important questions: What are the capabilities of these systems? and How do they compare to each other and to their closed source counterparts? In other words: What is the state-of-the-art in the area?. To gain an insight into these questions, we have conducted an in-depth analysis of three of the major open source workflow management systems – jBPM, OpenWFE, and Enhydra Shark, the results of which are reported here. This analysis is based on the workflow patterns framework and provides a continuation of the series of evaluations performed using the same framework on closed source systems, business process modelling languages, and web-service composition standards. The results from evaluations of the three open source systems are compared with each other and also with the results from evaluations of three representative closed source systems: Staffware, WebSphere MQ, and Oracle BPEL PM. The overall conclusion is that open source systems are targeted more toward developers rather than business analysts. They generally provide less support for the patterns than closed source systems, particularly with respect to the resource perspective, i.e. the various ways in which work is distributed amongst business users and managed through to completion.
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It has the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. Although the LSB sections are commonly used as flexural members, no research has been undertaken on the shear behaviour of LSBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs. In this research finite element models of LSBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. They were validated by comparing their results with available experimental results. The models provided full details of the shear buckling and strength characteristics of LSBs, and showed the presence of considerable improvements to web shear buckling in LSBs and associated post-buckling strength. This paper presents the details of the finite element models of LSBs and the results. Both finite element analysis and experimental results showed that the current design rules in cold-formed steel codes are very conservative for the shear design of LSBs. The ultimate shear capacities from finite element analyses confirmed the accuracy of proposed shear strength equations for LSBs based on the North American specification and DSM design equations. Developed finite element models were used to investigate the reduction to shear capacity of LSBs when full height web side plates were not used or when only one web side plate was used, and these results are also presented in this paper.
Resumo:
Service-oriented Architectures (SOA) and Web services leverage the technical value of solutions in the areas of distributed systems and cross-enterprise integration. The emergence of Internet marketplaces for business services is driving the need to describe services, not only from a technical level, but also from a business and operational perspective. While, SOA and Web services reside in an IT layer, organizations owing Internet marketplaces are requiring advertising and trading business services which reside in a business layer. As a result, the gap between business and IT needs to be closed. This paper presents USDL (Unified Service Description Language), a specification language to describe services from a business, operational and technical perspective. USDL plays a major role in the Internet of Services to describe tradable services which are advertised in electronic marketplaces. The language has been tested using two service marketplaces as use cases.
Resumo:
Purpose. The Useful Field of View (UFOV(R)) test has been shown to be highly effective in predicting crash risk among older adults. An important question which we examined in this study is whether this association is due to the ability of the UFOV to predict difficulties in attention-demanding driving situations that involve either visual or auditory distracters. Methods. Participants included 92 community-living adults (mean age 73.6 +/- 5.4 years; range 65-88 years) who completed all three subtests of the UFOV involving assessment of visual processing speed (subtest 1), divided attention (subtest 2), and selective attention (subtest 3); driving safety risk was also classified using the UFOV scoring system. Driving performance was assessed separately on a closed-road circuit while driving under three conditions: no distracters, visual distracters, and auditory distracters. Driving outcome measures included road sign recognition, hazard detection, gap perception, time to complete the course, and performance on the distracter tasks. Results. Those rated as safe on the UFOV (safety rating categories 1 and 2), as well as those responding faster than the recommended cut-off on the selective attention subtest (350 msec), performed significantly better in terms of overall driving performance and also experienced less interference from distracters. Of the three UFOV subtests, the selective attention subtest best predicted overall driving performance in the presence of distracters. Conclusions. Older adults who were rated as higher risk on the UFOV, particularly on the selective attention subtest, demonstrated poorest driving performance in the presence of distracters. This finding suggests that the selective attention subtest of the UFOV may be differentially more effective in predicting driving difficulties in situations of divided attention which are commonly associated with crashes.