298 resultados para CHARGE STORAGE MECHANISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main theme of this thesis is to allow the users of cloud services to outsource their data without the need to trust the cloud provider. The method is based on combining existing proof-of-storage schemes with distance-bounding protocols. Specifically, cloud customers will be able to verify the confidentiality, integrity, availability, fairness (or mutual non-repudiation), data freshness, geographic assurance and replication of their stored data directly, without having to rely on the word of the cloud provider.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a distributed control approach to coordinate multiple energy storage units (ESUs) to avoid violation of voltage and thermal constraints, which are some of the main power quality challenges for future distribution networks. ESUs usually are connected to a network through voltage source converters. In this paper, both ESU converters active and reactive power are used to deal with the above mentioned power quality issues. ESUs' reactive power is proposed to be used for voltage support, while the active power is to be utilized in managing network loading. Two typical distribution networks are used to apply the proposed method, and the simulated results are illustrated in this paper to show the effectiveness of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed mechanisms for the formation of hydroxyl or alkoxyl radicals in the reactions between tetrachloro-p-benzoquinone (TCBQ) and organic hydroperoxides are crucial for better understanding the potential carcinogenicity of polyhalogenated quinones. Herein, the mechanism of the reaction between TCBQ and H2O2 has been systematically investigated at the B3LYP/6-311++G** level of theory in the presence of different numbers of water molecules. We report that the whole reaction can easily take place with the assistance of explicit water molecules. Namely, an initial intermediate is formed first. After that, a nucleophilic attack of H2O2 onto TCBQ occurs, which results in the formation of a second intermediate that contains an OOH group. Subsequently, this second intermediate decomposes homolytically through cleavage of the O-O bond to produce a hydroxyl radical. Energy analyses suggest that the nucleophilic attack is the rate-determining step in the whole reaction. The participation of explicit water molecules promotes the reaction significantly, which can be used to explain the experimental phenomena. In addition, the effects of F, Br, and CH3 substituents on this reaction have also been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between new two-dimensional carbon allotropes, i.e. graphyne (GP) and graphdiyne (GD), and light metal complex hydrides LiAlH4, LiBH4, and NaAlH4 was studied using density functional theory (DFT) incorporating long range van der Waals dispersion correction. The light metal complex hydrides show much stronger interaction with GP and GP than that with fullerene due to the well defined pore structure. Such strong interactions greatly affect the degree of charge donation from the alkali metal atom to AlH4 or BH4, consequently destabilizing the Al-H or B-H bonds. Compared to the isolated light metal complex hydride, the presence of GP or GD can lead to a significant reduction of the hydrogen removal energy. Most interestingly, the hydrogen removal energies for LiBHx on GP and with GD are found to be lowered at all the stages (x from 4 to 1) whereas the H-removal energy in the third stage is increased for LiBH4 on fullerene. In addition, the presence of uniformly distributed pores on GP and GD is expected to facilitate the dehydrogenation of light metal complex hydrides. The present results highlight new interesting materials to catalyze light metal complex hydrides for potential application as media for hydrogen storage. Since GD has been successfully synthesized in a recent experiment, we hope the present work will stimulate further experimental investigations in this direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy policy is driving renewable energy deployment with most of the developed countries having some form of renewable energy portfolio standard and emissions reduction target. To deliver upon these ambitious targets, those renewable energy technologies that are commercially available, such as wind and solar, are being deployed, but inherently have issues with intermittency of supply. To overcome these issues, storage options will need to be introduced into the distribution network with benefits for both demand management and power systems quality. How this can be utilised most effectively within the distribution network will allow for an even greater proportion of our energy demand to be met through renewable resources and meet the aspirational targets set. The distribution network will become a network of smart-grids, but to work efficiently and effectively, power quality issues surrounding intermittency must be overcome, with storage being a major factor in this solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Vehicle-to-Grid (V2G) concept is based on the newly developed and marketed technologies of hybrid petrol-electric vehicles, most notably represented by the Toyota Prius, in combination with significant structural changes to the world's energy economy, and the growing strain on electricity networks. The work described in this presentation focuses on the market and economic impacts of grid connected vehicles. We investigate price reduction effects and transmission system expansion cost reduction. We modelled a large numbers of plug-in-hybrid vehicle batteries by aggregating them into a virtual pumped-storage power station at the Australian national electricity market's (NEM) region level. The virtual power station concept models a centralised control for dispatching (operating) the aggregated electricity supply/demand capabilities of a large number of vehicles and their batteries. The actual level of output could be controlled by human or automated agents to either charge or discharge from/into the power grid. As previously mentioned the impacts of widespread deployments of this technology are likely to be economic, environmental and physical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a design technique of a fully regenerative dynamic dynamometer. It incorporates an energy storage system to absorb the energy variation due to dynamometer transients. This allows the minimum power electronics requirement at the grid to supply the losses. The simulation results of the full system over a driving cycle show the amount of energy required to complete a driving cycle, therefore the size of the energy storage system can be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurately quantifying total freshwater storage methane release to atmosphere requires the spatial–temporal measurement of both diffusive and ebullitive emissions. Existing floating chamber techniques provide localised assessment of methane flux, however, significant errors can arise when weighting and extrapolation to the entire storage, particularly when ebullition is significant. An improved technique has been developed that compliments traditional chamber based experiments to quantify the storage-scale release of methane gas to atmosphere through ebullition using the measurements from an Optical Methane Detector (OMD) and a robotic boat. This provides a conservative estimate of the methane emission rate from ebullition along with the bubble volume distribution. It also georeferences the area of ebullition activity across entire storages at short temporal scales. An assessment on Little Nerang Dam in Queensland, Australia, demonstrated whole storage methane release significantly differed spatially and throughout the day. Total methane emission estimates showed a potential 32-fold variation in whole-of-dam rates depending on the measurement and extrapolation method and time of day used. The combined chamber and OMD technique showed that 1.8–7.0% of the surface area of Little Nerang Dam is accounting for up to 97% of total methane release to atmosphere throughout the day. Additionally, over 95% of detectable ebullition occurred in depths less than 12 m during the day and 6 m at night. This difference in spatial and temporal methane release rate distribution highlights the need to monitor significant regions of, if not the entire, water storage in order to provide an accurate estimate of ebullition rates and their contribution to annual methane emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel’s adhesive versatility, which is thought to be due to the plaque–substrate interface being rich in 3,4-dihydroxy-L-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of b-tricalcium phosphate (b-TCP) bioceramics by soaking b-TCP bioceramics in Tris–dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris–HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of b-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the b-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of b-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a renewable energy source, wind power is playing an increasingly important role in China’s electricity supply. Meanwhile, China is also the world’s largest market for Clean Development Mechanism (CDM) wind power projects. Based on the data of 27 wind power projects of Inner Mongolia registered with the Executive Board of the United Nations (EB) in 2010, this paper constructs a financial model of Net Present Value (NPV) to analyze the cost of wind power electricity. A sensitivity analysis is then conducted to examine the impact of different variables with and without Certified Emission Reduction (CER) income brought about by the CDM. It is concluded that the CDM, along with static investment and annual wind electricity production, is one of the most significant factors in promoting the development of wind power in China. Additionally, wind power is envisaged as a practical proposition for competing with thermal power if the appropriate actions identified in the paper are made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-conducting phase I CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane), which is of considerable interest as a switching device for memory storage materials, can be electrocrystallized from CH3CN via two distinctly different pathways when TCNQ is reduced to TCNQ˙− in the presence of [Cu(MeCN)4]+. The first pathway, identified in earlier studies, occurs at potentials where TCNQ is reduced to TCNQ˙− and involves a nucleation–growth mechanism at preferred sites on the electrode to produce arrays of well separated large branched needle-shaped phase I CuTCNQ crystals. The second pathway, now identified at more negative potentials, generates much smaller needle-shaped phase I CuTCNQ crystals. These electrocrystallize on parts of the surface not occupied in the initial process and give rise to film-like characteristics. This process is attributed to the reduction of Cu+[(TCNQ˙−)(TCNQ)] or a stabilised film of TCNQ via a solid–solid conversion process, which also involves ingress of Cu+via a nucleation–growth mechanism. The CuTCNQ surface area coverage is extensive since it occurs at all areas of the electrode and not just at defect sites that dominate the crystal formation sites for the first pathway. Infrared spectra, X-ray diffraction, surface plasmon resonance, quartz crystal microbalance, scanning electron microscopy and optical image data all confirm that two distinctly different pathways are available to produce the kinetically-favoured and more highly conducting phase I CuTCNQ solid, rather than the phase II material.