158 resultados para Bone marrow biopsies


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A paradigm shift has taken place in which bone implant materials has gone from being relatively inert to having immunomodulatory properties, indicating the importance of immune response when these materials interact with the host tissues. It has therefore become important to endow the implant materials with immunomodulatory properties favouring osteogenesis and osseointegration. Strontium, zinc and silicon are bioactive elements that have important roles in bone metabolism and that also elicit significant immune responses. In this study, Sr-, Zn- and Si-containing bioactive Sr2ZnSi2O7 (SZS) ceramic coatings on Ti–6Al–4V were successfully prepared by a plasma-spray coating method. The SZS coatings exhibited slow release of the bioactive ions with significantly higher bonding strength than hydroxyapatite (HA) coatings. SZS-coated Ti–6Al–4V elicited significant effects on the immune cells, inhibiting the release of pro-inflammatory cytokines and fibrosis-enhancing factors, while upregulating the expression of osteogenic factors of macrophages; moreover, it could also inhibit the osteoclastic activities. The RANKL/RANK pathway, which enhances osteoclastogenesis, was inhibited by the SZS coatings, whereas the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) was significantly enhanced by the SZS coatings/macrophages conditioned medium, probably via the activation of BMP2 pathway. SZS coatings are, therefore, a promising material for orthopaedic applications, and the strategy of manipulating the immune response by a combination of bioactive elements with controlled release has the potential to endow biomaterials with beneficial immunomodulatory properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characterization of human dendritic cell (DC) subsets is essential for the design of new vaccines. We report the first detailed functional analysis of the human CD141(+) DC subset. CD141(+) DCs are found in human lymph nodes, bone marrow, tonsil, and blood, and the latter proved to be the best source of highly purified cells for functional analysis. They are characterized by high expression of toll-like receptor 3, production of IL-12p70 and IFN-beta, and superior capacity to induce T helper 1 cell responses, when compared with the more commonly studied CD1c(+) DC subset. Polyinosine-polycytidylic acid (poly I:C)-activated CD141(+) DCs have a superior capacity to cross-present soluble protein antigen (Ag) to CD8(+) cytotoxic T lymphocytes than poly I:C-activated CD1c(+) DCs. Importantly, CD141(+) DCs, but not CD1c(+) DCs, were endowed with the capacity to cross-present viral Ag after their uptake of necrotic virus-infected cells. These findings establish the CD141(+) DC subset as an important functionally distinct human DC subtype with characteristics similar to those of the mouse CD8 alpha(+) DC subset. The data demonstrate a role for CD141(+) DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections. Recent studies have demonstrated that UPEC can invade and replicate within epithelial cells, suggesting that this bacterial pathogen may occupy an intracellular niche within the host. Given that many intracellular pathogens target macrophages, we assessed the interactions between UPEC and macrophages. Colonization of the mouse bladder by UPEC strain CFT073 resulted in increased expression of myeloid-restricted genes, consistent with the recruitment of inflammatory macrophages to the site of infection. In in vitro assays, CFT073 was able to survive within primary mouse bone marrow-derived macrophages (BMM) up to 24 h post-infection. Three additional well-characterized clinical UPEC isolates associated with distinct UTI symptomatologies displayed variable long-term survival within BMM. UPEC strains UTI89 and VR50, originally isolated from patients with cystitis and asymptomatic bacteriuria respectively, showed elevated bacterial loads in BMM at 24 h post-infection as compared to CFT073 and the asymptomatic bacteriuria strain 83972. These differences did not correlate with differential effects on macrophage survival or initial uptake of bacteria. E. coli UTI89 localized to a Lamp1+ vesicular compartment within BMM. In contrast to survival within mouse BMM, intracellular bacterial loads of VR50 were low in both human monocyte-derived macrophages (HMDM) and in human T24 bladder epithelial cells. Collectively, these data suggest that some UPEC isolates may subvert macrophage anti-microbial pathways, and that host species differences may impact on intracellular UPEC survival.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The majority of stem cell therapies for corneal repair are based upon the use of progenitor cells isolated from corneal tissue, but a growing body of literature suggests a role for mesenchymal stromal cells (MSC) isolated from non-corneal tissues. While the mechanism of MSC action seems likely to involve their immuno-modulatory properties, claims have emerged of MSC transdifferentiation into corneal cells. Substantial differences in methodology and experimental outcomes, however, have prompted us to perform a systematic review of the published data. Key questions used in our analysis included; the choice of markers used to assess corneal cell phenotype, the techniques employed to detect these markers, adequate reporting of controls, and tracking of MSC when studied in vivo. Our search of the literature revealed 28 papers published since 2006, with half appearing since 2012. MSC cultures established from bone marrow and adipose tissue have been best studied (22 papers). Critically, only 11 studies employed appropriate markers of corneal cell phenotype, along with necessary controls. Ten out of these 11 papers, however, contained positive evidence of corneal cell marker expression by MSC. The clearest evidence is observed with respect to expression of markers for corneal stromal cells by MSC. In comparison, the evidence for MSC conversion into either corneal epithelial cells or corneal endothelial cells is often inconsistent or inconclusive. Our analysis clarifies this emerging body of literature and provides guidance for future studies of MSC differentiation within the cornea as well as other tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional program associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated, and quantified the mammalian and bacterial transcriptomes. BMMs responded to the two UPEC strains with a broadly similar gene expression program. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes upregulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GVHD remains the major complication of allo-HSCT. Murine models are the primary system used to understand GVHD, and to develop potential therapies. Several factors are critical for GVHD in these models; including histo- compatibility, conditioning regimen, and T-cell number. We serendipitously found that environmental factors such as the caging system and bedding also significantly impact the kinetics of GVHD in these models. This is important because such factors may influence the experimental conditions required to cause GVHD and how mice respond to various treatments. Consequently, this is likely to alter interpretation of results between research groups, and the perceived effectiveness of experimental therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Multipotent mesenchymal stromal cells suppress T-cell function in vitro, a property that has underpinned their use in treating clinical steroid-refractory graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. However the potential of mesenchymal stromal cells to resolve graft-versus-host disease is confounded by a paucity of pre-clinical data delineating their immunomodulatory effects in vivo. Design and Methods: We examined the influence of timing and dose of donor-derived mesenchymal stromal cells on the kinetics of graft-versus-host disease in two murine models of graft-versus-host disease (major histocompatibility complex-mismatched: UBI-GFP/BL6 [H-2b]→BALB/c [H-2d] and the sibling transplant mimic, UBI-GFP/BL6 [H-2b]→BALB.B [H-2b]) using clinically relevant conditioning regimens. We also examined the effect of mesenchymal stromal cell infusion on bone marrow and spleen cellular composition and cytokine secretion in transplant recipients. Results: Despite T-cell suppression in vitro, mesenchymal stromal cells delayed but did not prevent graft-versus-host disease in the major histocompatibility complex-mismatched model. In the sibling transplant model, however, 30% of mesenchymal stromal cell-treated mice did not develop graft-versus-host disease. The timing of administration and dose of the mesenchymal stromal cells influenced their effectiveness in attenuating graft-versus-host disease, such that a low dose of mesenchymal stromal cells administered early was more effective than a high dose of mesenchymal stromal cells given late. Compared to control-treated mice, mesenchymal stromal cell-treated mice had significant reductions in serum and splenic interferon-γ, an important mediator of graft-versus-host disease. Conclusions: Mesenchymal stromal cells appear to delay death from graft-versus-host disease by transiently altering the inflammatory milieu and reducing levels of interferon-γ. Our data suggest that both the timing of infusion and the dose of mesenchymal stromal cells likely influence these cells’ effectiveness in attenuating graft-versus-host disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multifunctional bioactive materials with the ability to stimulate osteogenesis and angiogenesis of stem cells play an important role in the regeneration of bone defects. However, how to develop such biomaterials remains a significant challenge. In this study, we prepared mesoporous silica nanospheres (MSNs) with uniform sphere size (∼90 nm) and mesopores (∼2.7 nm), which could release silicon ions (Si) to stimulate the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) via activating their ALP activity, bone-related gene and protein (OCN, RUNX2 and OPN) expression. Hypoxia-inducing therapeutic drug, dimethyloxaloylglycine (DMOG), was effectively loaded in the mesopores of MSNs (D-MSNs). The sustained release of DMOG from D-MSNs could stabilize HIF-1α and further stimulated the angiogenic differentiation of hBMSCs as indicated by the enhanced VEGF secretion and protein expression. Our study revealed that D-MSNs could combine the stimulatory effect on both osteogenic and angiogenic activity of hBMSCs. The potential mechanism of D-MSN-stimulated osteogenesis and angiogenesis was further elucidated by the supplementation of cell culture medium with pure Si ions and DMOG. Considering the easy handling characteristics of nanospheres, the prepared D-MSNs may be applied in the forms of injectable spheres for minimally invasive surgery, or MSNs/polymer composite scaffolds for bone defect repair. The concept of delivering both stimulatory ions and functional drugs may offer a new strategy to construct a multifunctional biomaterial system for bone tissue regeneration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graphene oxide (GO) has attracted much interest for applications in bone tissue engineering; however, until now the interaction between GO and stem cells, and the in vivo bone-forming ability of GO has not been explored. The aim of this study was to produce a GO-modified β-tricalcium phosphate (β-TCP-GRA) biceramics and then explore the material’s osteogenic capacity in vitro and in vivo, as well as unravel some of the molecular mechanisms behind this. β-TCP-GRA disks and scaffolds were successfully prepared by a simple GO/water suspension soaking method in combination with heat treatment. These scaffolds were found to significantly enhance the proliferation, alkaline phosphatase activity and osteogenic gene expression of human bone marrow stromal cells (hBMSCs), when compared to β-TCP without GO modification (controls). Activation of the Wnt/β-catenin signaling pathway in hBMSCs appears to be the mechanism behind this osteogenic induction by β-TCP-GRA. β-TCP-GRA scaffolds led to an increased rate of in vivo new bone formation compared to β-TCP controls, indicative of the stimulatory effect of GO on in vivo osteogenesis, making GO modification of β-TCP a very promising method for applications in bone tissue engineering, in particular for the regeneration of large bone defects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim Paediatric haematopoietic stem cell donors undergo non-therapeutic procedures and endure known and unknown physical and psychosocial risks for the benefit of a family member. One ethical concern is the risk they may be pressured by parents or health professionals to act as a donor. This paper adds to what is known about this topic by presenting the views of health professionals. Methods This qualitative study involved semi-structured interviews with 14 health professionals in Australasia experienced in dealing with paediatric donors. Transcripts were analysed using established qualitative methodologies. Results Health professionals considered that some paediatric donors experience pressure to donate. Situations were identified that were likely to increase the risk of pressure being placed on donors and views were expressed about the ethical ‘appropriateness’ of these practices within the family setting. Conclusions Children may be subject to pressure from family and health professionals to be tested and act as donors, Therefore, our ethical obligation to these children extends to implementing donor focused processes – including independent health professionals and the appointment of a donor advocate – to assist in detecting and addressing instances of inappropriate pressure being placed on a child.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Osteoblast lineage cells are direct effectors of osteogenesis and are, therefore, commonly used to evaluate the in vitro osteogenic capacity of bone substitute materials. This method has served its purposes when testing novel bone biomaterials; however, inconsistent results between in vitro and in vivo studies suggest the mechanisms that govern a material's capacity to mediate osteogenesis are not well understood. The emerging field of osteoimmunology and immunomodulation has informed a paradigm shift in our view of bone biomaterials–from one of an inert to an osteoimmunomodulatory material–highlighting the importance of immune cells in materials-mediated osteogenesis. Neglecting the importance of the immune response during this process is a major shortcoming of the current evaluation protocol. In this study we evaluated a potential angiogenic bone substitute material cobalt incorporated with β-tricalcium phosphate (CCP), comparing the traditional “one cell type” approach with a “multiple cell types” approach to assess osteogenesis, the latter including the use of immune cells. We found that CCP extract by itself was sufficient to enhance osteogenic differentiation of bone marrow stem cells (BMSCs), whereas this effect was cancelled out when macrophages were involved. In response to CCP, the macrophage phenotype switched to the M1 extreme, releasing pro-inflammatory cytokines and bone catabolic factors. When the CCP materials were implanted into a rat femur condyle defect model, there was a significant increase of inflammatory markers and bone destruction, coupled with fibrous encapsulation rather than new bone formation. These findings demonstrated that the inclusion of immune cells (macrophages) in the in vitro assessment matched the in vivo tissue response, and that this method provides a more accurate indication of the essential role of immune cells when assessing materials-stimulated osteogenesis in vitro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microwell platforms are frequently described for the efficient and uniform manufacture of 3-dimensional (3D) multicellular microtissues. Multiple partial or complete medium exchanges can displace microtissues from discrete microwells, and this can result in either the loss of microtissues from culture, or microtissue amalgamation when displaced microtissues fall into common microwells. Herein we describe the first microwell platform that incorporates a mesh to retain microtissues within discrete microwells; the microwell-mesh. We show that bonding a nylon mesh with an appropriate pore size over the microwell openings allows single cells to pass through the mesh into the microwells during the seeding process, but subsequently retains assembled microtissues within discrete microwells. To demonstrate the utility of this platform, we used the microwell-mesh to manufacture hundreds of cartilage microtissues, each formed from 5 × 10(3) bone marrow-derived mesenchymal stem/stromal cells (MSC). The microwell-mesh enabled reliable microtissue retention over 21-day cultures that included multiple full medium exchanges. Cartilage-like matrix formation was more rapid and homogeneous in microtissues than in conventional large diameter control cartilage pellets formed from 2 × 10(5) MSC each. The microwell-mesh platform offers an elegant mechanism to retain microtissues in microwells, and we believe that this improvement will make this platform useful in 3D culture protocols that require multiple medium exchanges, such as those that mimic specific developmental processes or complex sequential drug exposures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD)". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC) each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective - To investigate the HLA class I associations of ankylosing spondylitis (AS) in the white population, with particular reference to HLA-B27 subtypes. Methods - HLA-B27 and -B60 typing was performed in 284 white patients with AS. Allele frequencies of HLA-B27 and HLA-B60 from 5926 white bone marrow donors were used for comparison. HLA-B27 subtyping was performed by single strand conformation polymorphism (SSCP) in all HLA-B27 positive AS patients, and 154 HLA-B27 positive ethnically matched blood donors. Results - The strong association of HLA-B27 and AS was confirmed (odds ratio (OR) 171, 95% confidence interval (CI) 135 to 218; p < 10-99). The association of HLA-B60 with AS was confirmed in HLA-B27 positive cases (OR 3.6, 95% CI 2.1 to 6.3; p < 5 x 10-5), and a similar association was demonstrated in HLA-B27 negative AS (OR 3.5, 95% CI 1.1 to 11.4; p < 0.05). No significant difference was observed in the frequencies of HLA-B27 allelic subtypes in patients and controls (HLA-B*2702, three of 172 patients v five of 154 controls; HLA-B*2705, 169 of 172 patients v 147 of 154 controls; HkA-B*2708, none of 172 patients v two of 154 controls), and no novel HLA-B27 alleles were detected. Conclusion - HLA-B27 and -B60 are associated with susceptibility to AS, but differences in BLA-B27 subtype do not affect susceptibility to AS in this white population.