238 resultados para Birkhoff normal form


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is apparent that IT resources are important for organisations. It is also clear that organisations unique competencies, their IT-related capabilities, leverage the IT resources uniquely to create and sustain competitive advantage. However, IT resources are dynamic, and evolve at an exponential rate. This means that organisations will need to sustain their competencies to leverage opportunities offered by new IT resources. Research on ways to sustain IT-related capabilities is limited and a deeper understanding of this situation is important. Amongst other factors, a possible reason for this lack of progress in this area could be due to the lack of validated measurement items of the theoretical constructs to conduct such studies. We suggest an environment in which organisations could build new and sustain their existing IT-related capabilities. We then report on the development of valid and reliable measures for this environment. The validated measures would be useful in extending our understanding on how firms could sustain their IT-related capabilities. This effort will provide a deeper understanding of how firms can secure sustainable IT-related business value from their acquired IT resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we have demonstrated that the preproghrelin derived hormones, ghrelin and obestatin, may play a role in ovarian cancer. Ghrelin and obestatin stimulated an increase in cell migration in ovarian cancer cell lines and may play a role in cancer progression. Ovarian cancer is the leading cause of death among gynaecological cancers and is the sixth most common cause of cancer-related deaths in women in developed countries. As ovarian cancer is difficult to diagnose at a low tumour grade, two thirds of ovarian cancers are not diagnosed until the late stages of cancer development resulting in a poor prognosis for the patient. As a result, current treatment methods are limited and not ideal. There is an urgent need for improved diagnostic markers, as well better therapeutic approaches and adjunctive therapies for this disease. Ghrelin has a number of important physiological effects, including roles in appetite regulation and the stimulation of growth hormone release. It is also involved in regulating the immune, cardiovascular and reproductive systems and regulates sleep, memory and anxiety, and energy metabolism. Over the last decade, the ghrelin axis, (which includes the hormones ghrelin and obestatin and their receptors), has been implicated in the pathogenesis of many human diseases and it may t may also play an important role in the development of cancer. Ghrelin is a 28 amino acid peptide hormone that exists in two forms. Acyl ghrelin (usually referred to as ghrelin), has a unique n-octanoic acid post-translational modification (which is catalysed by ghrelin O-acyltransferase, GOAT), and desacyl ghrelin, which is a non-octanoylated form. Octanoylated ghrelin acts through the growth hormone secretagogue receptor type 1a (GHSR1a). GHSR1b, an alternatively spliced isoform of GHSR, is C-terminally truncated and does not bind ghrelin. Ghrelin has been implicated in the pathophysiology of a number of diseases Obestatin is a 23 amino acid, C-terminally amidated peptide which is derived from preproghrelin. Although GPR39 was originally thought to be the obestatin receptor this has been disproven, and its receptor remains unknown. Obestatin may have as diverse range of roles as ghrelin. Obestatin improves memory, inhibits thirst and anxiety, increases pancreatic juice secretion and has cardioprotective effects. Obestatin also has been shown to regulate cell proliferation, differentiation and apoptosis in some cell types. Prior to this study, little was known regarding the functions and mechanisms of action ghrelin and obestatin in ovarian cancer. In this study it was demonstrated that the full length ghrelin, GHSR1b and GOAT mRNA transcripts were expressed in all of the ovarian-derived cell lines examined (SKOV3, OV-MZ-6 and hOSE 17.1), however, these cell lines did not express GHSR1a. Ovarian cancer tissue of varying stages and normal ovarian tissue expressed the coding region for ghrelin, obestatin, and GOAT, but not GHSR1a, or GHSR1b. No correlations between cancer grade and the level of expression of these transcripts were observed. This study demonstrated for the first time that both ghrelin and obestatin increase cell migration in ovarian cancer cell lines. Treatment with ghrelin (for 72 hours) significantly increased cell migration in the SKOV3 and OV-MZ-6 ovarian cancer cell lines. Ghrelin (100 nM) stimulated cell migration in the SKOV3 (2.64 +/- 1.08 fold, p <0.05) and OV-MZ-6 (1.65 +/- 0.31 fold, p <0.05) ovarian cancer cell lines, but not in the representative normal cell line hOSE 17.1. This increase in migration was not accompanied by an increase in cell invasion through Matrigel. In contrast to other cancer types, ghrelin had no effect on proliferation. Ghrelin treatment (10nM) significantly decreased attachment of the SKOV3 ovarian cancer cell line to collagen IV (24.7 +/- 10.0 %, p <0.05), however, there were no changes in attachment to the other extracellular matrix molecules (ECM) tested (fibronectin, vitronectin and collagen I), and there were no changes in attachment to any of the ECM molecules in the OV-MZ-6 or hOSE 17.1 cell lines. It is, therefore, unclear if ghrelin plays a role in cell attachment in ovarian cancer. As ghrelin has previously been demonstrated to signal through the ERK1/2 pathway in cancer, we investigated ERK1/2 signalling in ovarian cancer cell lines. In the SKOV3 ovarian cancer cell line, a reduction in ERK1/2 phosphorylation (0.58 fold +/- 0.23, p <0.05) in response to 100 nM ghrelin treatment was observed, while no significant change in ERK1/2 signalling was seen in the OV-MZ-6 cell line with treatment. This suggests that this pathway is unlikely to be involved in mediating the increased migration seen in the ovarian cancer cell lines with ghrelin treatment. In this study ovarian cancer tissue of varying stages and normal ovarian tissue expressed the coding region for obestatin, however, no correlation between cancer grade and level of obestatin transcript expression was observed. In the ovarian-derived cell lines studied (SKOV3, OV-MZ-6 and hOSE 17.1) it was demonstrated that the full length preproghrelin mRNA transcripts were expressed in all cell lines, suggesting they have the ability to produce mature obestatin. This is the first study to demonstrate that obestatin stimulates cell migration and cell invasion. Obestatin induced a significant increase in migration in the SKOV3 ovarian cancer cell line with 10 nM (2.80 +/- 0.52 fold, p <0.05) and 100 nM treatments (3.12 +/- 0.68 fold, p <0.05) and in the OV-MZ-6 cancer cell line with 10 nM (2.04 +/- 0.10 fold, p <0.01) and 100 nM treatments (2.00 +/- 0.37 fold, p <0.05). Obestatin treatment did no affect cell migration in the hOSE 17.1normal ovarian epithelial cell line. Obestatin treatment (100 nM) also stimulated a significant increase in cell invasion in the OV-MZ-6 ovarian cancer cell line (1.45 fold +/- 0.13, p <0.05) and in the hOSE17.1 normal ovarian cell line cells (1.40 fold +/- 0.04 and 1.55 fold +/- 0.05 respectively, p <0.01) with 10 nM and 100 nM treatments. Obestatin treatment did not stimulate cell invasion in the SKOV3 ovarian cancer cell line. This lack of obestatin-stimulated invasion in the SKOV3 cell line may be a cell line specific result. In this study, obestatin did not stimulate cell proliferation in the ovarian cell lines and it has previously been shown to have no effect on cell proliferation in the BON-1 pancreatic neuroendocrine and GC rat somatotroph tumour cell lines. In contrast, obestatin has been shown to affect cell proliferation in gastric and thyroid cancer cell lines, and in some normal cell lines. Obestatin also had no effect on attachment of any of the cell lines to any of the ECM components tested (fibronectin, vitronectin, collagen I and collagen IV). The mechanism of action of obestatin was investigated further using a two dimensional-difference in gel electrophoresis (2D-DIGE) proteomic approach. After treatment with obestating (0, 10 and 100 nM), SKOV3 ovarian cancer and hOSE 17.1 normal ovarian cell lines were collected and 2D-DIGE analysis and mass spectrometry were performed to identify proteins that were differentially expressed in response to treatment. Twenty-six differentially expressed proteins were identified and analysed using Ingenuity Pathway Analysis (IPA). This linked 16 of these proteins in a network. The analysis suggested that the ERK1/2 MAPK pathway was a major mediator of obestatin action. ERK1/2 has previously been shown to be associated with obestatin-stimulated cell proliferation and with the anti-apoptotic effects of obestatin. Activation of the ERK1/2 signalling pathway by obestatin was, therefore, investigated in the SKOV3 and OV-MZ-6 ovarian cancer cell lines using anti-active antibodies and Western immunoblots. Obestatin treatment significantly decreased ERK1/2 phosphorylation at higher obestatin concentrations in both the SKOV3 (100 nM and 1000 nM) and OV-MZ-6 (1000 nM) cell lines compared to the untreated controls. Currently, very little is known about obestatin signalling in cancer. This thesis has demonstrated for the first time that the ghrelin axis may play a role in ovarian cancer migration. Ghrelin and obestatin increased cell migration in ovarian cancer cell lines, indicating that they may be a useful target for therapies that reduce ovarian cancer progression. Further studies investigating the role of the ghrelin axis using in vivo ovarian cancer metastasis models are warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current approaches to airport development and land use sit at odds with the tradition of airports as spaces for aviation (Stevens et a/. 2010). While airports remain the primary interface between air transport and society, the functions they include within their boundaries have expanded well beyond the provision of infrastructure for aviation and logistics. Shopping malls, commercial office space, hotels, golf courses and conference facilities arc increasingly normal uses of land within airport boundaries (Kasarda 2008), and enhance the role of airports from transport infrastructure to a new form of economic infrastructure (Freestone 2009). However, the expanding role of airports, and the resulting diversification in airport land uses, has not been without opposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell cycle is a carefully choreographed series of phases that when executed successfully will allow the complete replication of the genome and the equal division of the genome and other cellular content into two independent daughter cells. The inability of the cell to execute cell division successfully can result in either checkpoint activation to allow repair and/or apoptosis and/or mutations/errors that may or may not lead to tumourgenesis. Cyclin A/CDK2 is the primary cyclin/CDK regulating G2 phase progression of the cell cycle. Cyclin A/CDK2 activity peaks in G2 phase and its inhibition causes a G2 phase delay that we have termed 'the cyclin A/CDK2 dependent G2 delay'. Understanding the key pathways that are involved in the cyclin A/CDK2 dependent G2 delay has been the primary focus of this study. Characterising the cyclin A/CDK2 dependent G2 delay revealed accumulated levels of the inactive form of the mitotic regulator, cyclin B/CDK1. Surprisingly, there was also increased microtubule nucleation at the centrosomes, and the centrosomes stained for markers of cyclin B/CDK1 activity. Both microtubule nucleation at the centrosomes and phosphoprotein markers were lost with short-term treatment of CDK1/2 inhibition. Cyclin A/CDK2 localised at the centrosomes in late G2 phase after separation of the centrosomes but before the start of prophase. Thus G2 phase cyclin A/CDK2 controls the timing of entry into mitosis by controlling the subsequent activation of cyclin B/CDK1, but also has an unexpected role in coordinating the activation of cyclin B/CDK1 at the centrosome and in the nucleus. In addition to regulating the timing of cyclin B/CDK1 activation and entry into mitosis in the unperturbed cell cycle, cyclin A/CDK2 also was shown to have a role in G2 phase checkpoint recovery. Known G2 phase regulators were investigated to determine whether they had a role in imposing the cyclin A/ CDK2 dependent G2 delay. Examination of the critical G2 checkpoint arrest protein, Chk1, which also has a role during unperturbed G2/M phases revealed the presence of activated Chk1 in G2 phase, in a range of cell lines. Activated Chk1 levels were shown to accumulate in cyclin A/CDK2 depleted/inhibited cells. Further investigations revealed that Chk1, but not Chk2, depletion could reverse the cyclin A/CDK2 dependent G2 delay. It was confirmed that the accumulative activation of Chk1 was not a consequence of DNA damage induced by cyclin A depletion. The potential of cyclin A/CDK2 to regulate Chk1 revealed that the inhibitory phosphorylations, Ser286 and Ser301, were not directly catalysed by cyclin A/CDK2 in G2 phase to regulate mitotic entry. It appeared that the ability of cyclin A/CDK2 to regulate cyclin B/CDK1 activation impacted cyclin B/CDK1s phosphorylation of Chk1 on Ser286 and Ser301, thereby contributing to the delay in G2/M phase progression. Chk1 inhibition/depletion partially abrogated the cyclin A/CDK2 dependent G2 delay, and was less effective in abrogating G2 phase checkpoint suggesting that other cyclin A/CDK2 dependent mechanisms contributed to these roles of cyclin A/CDK2. In an attempt to identify these other contributing factors another G2/M phase regulator known to be regulated by cyclin A/CDK2, Cdh1 and its substrates Plk1 and Claspin were examined. Cdh1 levels were reduced in cyclin A/CDK2 depleted/inhibited cells although this had little effect on Plk1, a known Cdh1 substrate. However, the level of another substrate, Claspin, was increased. Cdh1 depletion mimicked the effect of cyclin A depletion but to a weaker extent and was sufficient at increasing Claspin levels similar to the increase caused by cyclin A depletion. Co-depletion of cyclin A and Claspin blocked the accumulation of activated Chk1 normally seen with cyclin A depletion alone. However Claspin depletion alone did not reduce the cyclin A/CDK2 dependent G2 delay but this is likely to be a result of inhibition of S phase roles of Claspin. Together, these data suggest that cyclin A/CDK2 regulates a number of different mechanisms that contribute to G2/M phase progression. Here it has been demonstrated that in normal G2/M progression and possibly to a lesser extent in G2 phase checkpoint recovery, cyclin A/CDK2 regulates the level of Cdh1 which in turn affects at least one of its substrates, Claspin, and consequently results in the increased level of activated Chk1 observed. However, the involvement of Cdh1 and Claspin alone does not explain the G2 phase delay observed with cyclin A/CDK2 depletion/inhibition. It is likely that other mechanisms, possibly including cyclin A/CDK2 regulation of Wee1 and FoxM1, as reported by others, combine with the mechanism described here to regulate normal G2/M phase progression and G2 phase checkpoint recovery. These findings support the critical role for cyclin A/CDK2 in regulating progression into mitosis and suggest that upstream regulators of cyclin A/CDK2 activation will also be critical controllers of this cell cycle transition. The pathways that work to co-ordinate cell cycle progression are very intricate and deciphering these pathways, required for normal cell cycle progression, is key to understanding tumour development. By understanding cell cycle regulatory pathways it will allow the identification of the pathway/s and their mechanism/s that become affected in tumourgenesis. This will lead to the development of better targeted therapies, inferring better efficacy with fewer side effects than commonly seen with the use of traditional therapies, such as chemotherapy. Furthermore, this has the potential to positively impact the development of personalised medicines and the customisation of healthcare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Commencing selected workouts with low muscle glycogen availability augments several markers of training adaptation compared with undertaking the same sessions with normal glycogen content. However, low glycogen availability reduces the capacity to perform high-intensity (>85% of peak aerobic power (V·O2peak)) endurance exercise. We determined whether a low dose of caffeine could partially rescue the reduction in maximal self-selected power output observed when individuals commenced high-intensity interval training with low (LOW) compared with normal (NORM) glycogen availability. Methods Twelve endurance-trained cyclists/triathletes performed four experimental trials using a double-blind Latin square design. Muscle glycogen content was manipulated via exercise–diet interventions so that two experimental trials were commenced with LOW and two with NORM muscle glycogen availability. Sixty minutes before an experimental trial, subjects ingested a capsule containing anhydrous caffeine (CAFF, 3 mg-1·kg-1 body mass) or placebo (PLBO). Instantaneous power output was measured throughout high-intensity interval training (8 × 5-min bouts at maximum self-selected intensity with 1-min recovery). Results There were significant main effects for both preexercise glycogen content and caffeine ingestion on power output. LOW reduced power output by approximately 8% compared with NORM (P < 0.01), whereas caffeine increased power output by 2.8% and 3.5% for NORM and LOW, respectively, (P < 0.01). Conclusion We conclude that caffeine enhanced power output independently of muscle glycogen concentration but could not fully restore power output to levels commensurate with that when subjects commenced exercise with normal glycogen availability. However, the reported increase in power output does provide a likely performance benefit and may provide a means to further enhance the already augmented training response observed when selected sessions are commenced with reduced muscle glycogen availability. It has long been known that endurance training induces a multitude of metabolic and morphological adaptations that improve the resistance of the trained musculature to fatigue and enhance endurance capacity and/or exercise performance (13). Accumulating evidence now suggests that many of these adaptations can be modified by nutrient availability (9–11,21). Growing evidence suggests that training with reduced muscle glycogen using a “train twice every second day” compared with a more traditional “train once daily” approach can enhance the acute training response (29) and markers representative of endurance training adaptation after short-term (3–10 wk) training interventions (8,16,30). Of note is that the superior training adaptation in these previous studies was attained despite a reduction in maximal self-selected power output (16,30). The most obvious factor underlying the reduced intensity during a second training bout is the reduction in muscle glycogen availability. However, there is also the possibility that other metabolic and/or neural factors may be responsible for the power drop-off observed when two exercise bouts are performed in close proximity. Regardless of the precise mechanism(s), there remains the intriguing possibility that the magnitude of training adaptation previously reported in the face of a reduced training intensity (Hulston et al. (16) and Yeo et al.) might be further augmented, and/or other aspects of the training stimulus better preserved, if power output was not compromised. Caffeine ingestion is a possible strategy that might “rescue” the aforementioned reduction in power output that occurs when individuals commence high-intensity interval training (HIT) with low compared with normal glycogen availability. Recent evidence suggests that, at least in endurance-based events, the maximal benefits of caffeine are seen at small to moderate (2–3 mg·kg-1 body mass (BM)) doses (for reviews, see Refs. (3,24)). Accordingly, in this study, we aimed to determine the effect of a low dose of caffeine (3 mg·kg-1 BM) on maximal self-selected power output during HIT commenced with either normal (NORM) or low (LOW) muscle glycogen availability. We hypothesized that even under conditions of low glycogen availability, caffeine would increase maximal self-selected power output and thereby partially rescue the reduction in training intensity observed when individuals commence HIT with low glycogen availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) form as a natural by-product of the normal metabolism of oxygen and play important roles within the cell. Under normal circumstances the cell is able to maintain an adequate homeostasis between the formation of ROS and its removal through particular enzymatic pathways or via antioxidants. If however, this balance is disturbed a situation called oxidative stress occurs. Critically, oxidative stress plays important roles in the pathogenesis of many diseases, including cancer. Epigenetics is a process where gene expression is regulated by heritable mechanisms that do not cause any direct changes to the DNA sequence itself, and disruption of epigenetic mechanisms has important implications in disease. Evidence is emerging that histone deacetylases (HDACs) play decisive roles in regulating important cellular oxidative stress pathways including those involved with sensing oxidative stress and those involved with regulating the cellular response to oxidative stress. In particular aberrant regulation of these pathways by HDACs may play critical roles in cancer progression. In this review we discuss the current evidence linking epigenetics and oxidative stress and cancer, using chronic obstructive pulmonary disease and non-small cell lung cancer to illustrate the importance of epigenetics on these pathways within these disease settings. © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book analyses the structure, form and language of a selected number of international and national legal instruments and reviews how an illustrative range of international and national judicial institutions have responded to the issues before them and the processes of legal reasoning engaged by them in reaching their decisions. This involves a very detailed discussion of these primary sources of international and national environmental law with a view to determining their jurisprudential architecture and the processes of reasoning expected of those responsible for implementing these architectural arrangements. This book is concerned not with the effectiveness or the quality of an environmental legal system but only with its jurisprudential characteristics and their associated processes of legal reasoning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their inherently hypoxic environment, cancer cells often resort to glycolysis, or the anaerobic breakdown of glucose to form ATP to provide for their energy needs, known as the Warburg effect. At the same time, overexpression of the insulin receptor in non-small cell lung cancer (NSCLC) is associated with an increased risk of metastasis and decreased survival. The uptake of glucose into cells is carried out via glucose transporters or GLUTs. Of these, GLUT-4 is essential for insulin-stimulated glucose uptake. Following treatment with the epigenetic targeting agents histone deacetylase inhibitors (HDACi), GLUT-3 and GLUT-4 expression were found to be induced in NSCLC cell lines, with minimal responses in transformed normal human bronchial epithelial cells (HBECs). Similar results for GLUT-4 were observed in cells derived from liver, muscle, kidney and pre-adipocytes. Bioinformatic analysis of the promoter for GLUT-4 indicates that it may also be regulated by several chromatin binding factors or complexes including CTCF, SP1 and SMYD3. Chromatin immunoprecipitation studies demonstrate that the promoter for GLUT-4 is dynamically remodeled in response to HDACi. Overall, these results may have value within the clinical setting as (a) it may be possible to use this to enhance fluorodeoxyglucose (18F) positron emission tomography (FDG-PET) imaging sensitivity; (b) it may be possible to target NSCLC through the use of HDACi and insulin mediated uptake of the metabolic targeting drugs such as 2-deoxyglucose (2-DG); or (c) enhance or sensitize NSCLC to chemotherapy. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background High-risk foot complications such as neuropathy, ischaemia, deformity, infections, ulcers and amputations consume considerable health care resources and typically result from chronic diseases. This study aimed to develop and test the validity and reliability of a Queensland High Risk Foot Form (QHRFF) tool. Methods Phase one involved developing a QHRFF using an existing diabetes high-risk foot tool, literature search, expert panel and several state-wide stakeholder groups. Phase two tested the criterion-related validity along with inter- and intra-rater reliability of the final QHRFF. Three cohorts of patients (n = 94) and four clinicians, representing different levels of expertise, were recruited. Validity was determined by calculating sensitivity, specificity and positive predictive values (PPV). Kappa and intra-class correlation (ICC) statistics were used to establish reliability. Results A QHRFF tool containing 46-items across seven domains was developed and endorsed. The majority of QHRFF items achieved moderate-to-perfect validity (PPV = 0.71 – 1) and reliability (Kappa/ICC = 0.41 – 1). Items with weak validity and/or reliability included those identifying health professionals previously attending the patient, other (non-listed) co-morbidity, previous foot ulcer, foot deformity, optimum offloading and optimum footwear. Conclusions The QHRFF had moderate-to-perfect validity and reliability across the majority of items, particularly identifying individual co-morbidities and foot complications. Items with weak validity or reliability need to be re-defined or removed. Overall, the QHRFF appears to be a valid and reliable tool to assess, collect and measure clinical data pertaining to high-risk foot complications for clinical or research purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: People often modify oral solid dosage forms when they experience difficulty swallowing them. Modifying dosage forms may cause adverse effects to the patient, and the person undertaking the modification. Pharmacists are often the first point of contact for people in the general community seeking advice regarding medications. Nurses are at the forefront of administering medications to patients and are likely to be most directly affected by a patient’s swallowing ability, while general practitioners (GPs) are expected to consider swallowing abilities when prescribing medications. Objective: To compare the perspectives and experiences of GPs, pharmacists, and nurses regarding medication dosage form modification and their knowledge of medication modification. Method: Questionnaires tailored to each profession were posted to 630 GPs, and links to an online version were distributed to 2,090 pharmacists and 505 nurses. Results: When compared to pharmacists and GPs, nurses perceived that a greater proportion of the general community modified solid dosage forms. Pharmacists and GPs were most likely to consider allergies and medical history when deciding whether to prescribe or dispense a medicine, while nurses’ priorities were allergies and swallowing problems when administering medications. While nurses were more likely to ask their patients about their ability to swallow medications, most health professionals reported that patients “rarely” or “never” volunteered information about swallowing difficulties. The majority of health professionals would advise a patient to crush or split noncoated non-sustained-release tablets, and would consult colleagues or reference sources for sustained-release or coated tablets. Health professionals appeared to rely heavily upon the suffix attached to medication names (which suggest modified release properties) to identify potential problems associated with modifying medications. Conclusion: The different professional roles and responsibilities of GPs, pharmacists, and nurses are associated with different perspectives of, and experiences with, people modifying medications in the general community and knowledge about consequences of medication modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well established that literary work can promote insights that result in future change, whether on a personal or an institutional level. As Umberto Eco (1989) notes, the act of reading does not stop with the artist but continues into the work of communities. The papers delivered in this panel consider the regenerative role of literature within culture, arguing that the special properties of literature can convey an important sense of nature (Bateson 1973, Zapf 2008). These concepts are discussed in relation to writing about Australian flora and fauna. Using an ecocritical focus based on ideas about the relationship between literature and the environment the paper considers Australian works and the way in which literature enlivens this complex intersection between humans, animals and the environment. This engagement is investigated through three modes: the philosophical, the literary, and the practical. The novels discussed include Alexis Wright’s Carpentaria, Richard Flanagan’s Wanting, and Sonya Hartnett’s Forest, as well as a range of fictional and non-fictional works that describe the Blue Mountains region in New South Wales. The paper closes with a discussion of the role of story-telling as a way of introducing the public to specific environmental locations and issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the past decade, an attempt has been made by many research groups to define the roles of the growing number of Bcl-2 gene family proteins in the apoptotic process. The Bcl-2 family consists of pro-apoptotic (or cell death) and anti-apoptotic (or cell survival) genes and it is the balance in expression between these gene lineages that may determine the death or survival of a cell. The majority of studies have analysed the role/s of the Bcl-2 genes in cancer development. Equally important is their role in normal tissue development, homeostasis and non-cancer disease states. Bcl-2 is crucial for normal development in the kidney, with a deficiency in Bcl-2 producing such malformation that renal failure and death result. As a corollary, its role in renal disease states in the adult has been sought. Ischaemia is one of the most common causes of both acute and chronic renal failure. The section of the kidney that is most susceptible to ischaemic damage is the outer zone of the outer medulla. Within this zone the proximal tubules are most sensitive and often die by necrosis or desquamate. In the distal nephron, apoptosis is the more common form of cell death. Recent results from our laboratory have indicated that ischaemia-induced acute renal failure is associated with up-regulation of two anti-apoptotic Bcl-2 proteins (Bcl-2 and Bcl-XL) in the damaged distal tubule and occasional up-regulation of Bax in the proximal tubule. The distal tubule is a known reservoir for several growth factors important to renal growth and repair, such as insulin-like growth factor-1 (IGF-1) and epidermal growth factor (EGF). One of the likely possibilities for the anti-cell death action of the Bcl-2 genes is that the protected distal cells may be able to produce growth factors that have a further reparative or protective role via an autocrine mechanism in the distal segment and a paracrine mechanism in the proximal cells. Both EGF and IGF-1 are also up-regulated in the surviving distal tubules and are detected in the surviving proximal tubules, where these growth factors are not usually synthesized. As a result, we have been using in vitro methods to test: (i) the relative sensitivities of renal distal and proximal epithelial cell populations to injury caused by mechanisms known to act in ischaemia-reperfusion; (ii) whether a Bcl-2 anti-apoptotic mechanism acts in these cells; and (iii) whether an autocrine and/or paracrine growth factor mechanism is initiated. The following review discusses the background to these studies as well as some of our preliminary results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a work-in-progress that articulates my research journey based on the development of a curriculum innovation in environmental education. This journey had two distinct, but intertwined phases: action research based fieldwork, conducted collaboratively, to create a whole school approach to environmental education curriculum planning; and a phase of analysis and reflection based on the emerging findings, as I sought to create personal "living educational theory" about change and innovation. A key stimulus for the study was the perceived theory-practice gap in environmental education, which is often presented in the literature as a criticism of teachers for failing to achieve the values and action objectives of critical environmental education. Hence, many programs and projects are considered to be superficial and inconsequential in terms of their ability to seriously address environmental issues. The intention of this study was to work with teachers in a project that would be an exemplar of critical environmental education. This would be in the form of a whole school "learnscaping" curriculum in a primary school whereby the schoolgrounds would be utilised for interdisciplinary critical environment education. Parallel with the three cycles of action research in this project, my research objectives were to identify and comment upon the factors that influence the generation of successful educational innovation. It was anticipated that the project would be a collaboration involving me, as researcher-facilitator, and many of the teachers in the school as active participants. As the project proceeded through its action cycles, however, it became obvious that the goal of developing a critical environmental education curriculum, and the use of highly participatory processes, were unrealistic. Institutional and organisational rigidities in education generally, teachers' day-to-day work demands, and the constant juggle of work, family and other responsibilities for all participants acted as significant constraints. Consequently, it became apparent that the learnscaping curriculum would not be the hoped-for exemplar. Progress was slow and, at times, the project was in danger of stalling permanently. While the curriculum had some elements of critical environmental education, these were minor and not well spread throughout the school. Overall, the outcome seemed best described as a "small win"; perhaps just another example of the theory-practice gap that I had hoped this project would bridge. Towards the project's end, however, my continuing reflection led to an exploration of chaos/complexity theory which gave new meaning to the concept of a "small win". According to this theory, change is not the product of linear processes applied methodically in purposeful and diligent ways, but emerges from serendipitous events that cannot be planned for, or forecast in advance. When this perspective of change is applied to human organisations - in this study, a busy school - the context for change is recognised not as a stable, predictable environment, but as a highly complex system where change happens all the time, cannot be controlled, and no one can be really sure where the impacts might lead. This so-called "butterfly effect" is a central idea of this theory where small changes or modifications are created - the effects of which are difficult to know, let alone determine - and which can have large-scale impacts. Allied with this effect is the belief that long term developments in an organisation that takes complexity into account, emerge by spontaneous self-organising evolution, requiring political interaction and learning in groups, rather than systematic progress towards predetermined goals or "visions". Hence, because change itself and the contexts of change are recognised as complex, chaos/complexity theory suggests that change is more likely to be slow and evolutionary - cultural change - rather than fast and revolutionary where the old is quickly ushered out by radical reforms and replaced by new structures and processes. Slow, small-scale changes are "normal", from a complexity viewpoint, while rapid, wholesale change is both unlikely and unrealistic. Therefore, the frustratingly slow, small-scale, imperfect educational changes that teachers create - including environmental education initiatives - should be seen for what they really are. They should be recognised as successful changes, the impacts of which cannot be known, but which have the potential to magnify into large-scale changes into the future. Rather than being regarded as failures for not meeting critical education criteria, "small wins" should be cause for celebration and support. The intertwined phases of collaborative action research and individual researcher reflection are mirrored in the thesis structure. The first three chapters, respectively, provide the thesis overview, the literature underpinning the study's central concern, and the research methodology. Chapters 4, 5, and 6 report on each of the three action research cycles of the study, namely Laying the Groundwork, Down to Work!, and The Never-ending Story. Each of these chapters presents a narrative of events, a literature review specific to developments in the cycle, and analysis and critique of the events, processes and outcomes of each cycle. Chapter 7 provides a synthesis of the whole of the study, outlining my interim propositions about facilitating curriculum change in schools through action research, and the implications of these for environmental education.