309 resultados para Beam angle selection
Resumo:
Motorcycles are particularly vulnerable in right-angle crashes at signalized intersections. The objective of this study is to explore how variations in roadway characteristics, environmental factors, traffic factors, maneuver types, human factors as well as driver demographics influence the right-angle crash vulnerability of motorcycles at intersections. The problem is modeled using a mixed logit model with a binary choice category formulation to differentiate how an at-fault vehicle collides with a not-at-fault motorcycle in comparison to other collision types. The mixed logit formulation allows randomness in the parameters and hence takes into account the underlying heterogeneities potentially inherent in driver behavior, and other unobserved variables. A likelihood ratio test reveals that the mixed logit model is indeed better than the standard logit model. Night time riding shows a positive association with the vulnerability of motorcyclists. Moreover, motorcyclists are particularly vulnerable on single lane roads, on the curb and median lanes of multi-lane roads, and on one-way and two-way road type relative to divided-highway. Drivers who deliberately run red light as well as those who are careless towards motorcyclists especially when making turns at intersections increase the vulnerability of motorcyclists. Drivers appear more restrained when there is a passenger onboard and this has decreased the crash potential with motorcyclists. The presence of red light cameras also significantly decreases right-angle crash vulnerabilities of motorcyclists. The findings of this study would be helpful in developing more targeted countermeasures for traffic enforcement, driver/rider training and/or education, safety awareness programs to reduce the vulnerability of motorcyclists.
Resumo:
Red light cameras (RLC) have been used to reduce right-angle collisions at signalized intersections. However, the effect of RLCs on motorcycle crashes has not been well investigated. The objective of this study is to evaluate the effectiveness of RLCs on motorcycle safety in Singapore. This is done by comparing their exposure, proneness of at-fault right-angle crashes as well as the resulting right-angle collisions at RLC with those at non-RLC sites. Estimating the crash vulnerability from not-at-fault crash involvements, the study shows that with a RLC, the relative crash vulnerability or crash-involved exposure of motorcycles at right-angle crashes is reduced. Furthermore, field investigation of motorcycle maneuvers reveal that at non-RLC arms, motorcyclists usually queue beyond the stop-line, facilitating an earlier discharge and hence become more exposed to the conflicting stream. However at arms with a RLC, motorcyclists are more restrained to avoid activating the RLC and hence become less exposed to conflicting traffic during the initial period of the green. The study also shows that in right-angle collisions, the proneness of at-fault crashes of motorcycles is lowest among all vehicle types. Hence motorcycles are more likely to be victims than the responsible parties in right-angle crashes. RLCs have also been found to be very effective in reducing at-fault crash involvements of other vehicle types which may implicate exposed motorcycles in the conflicting stream. Taking all these into account, the presence of RLCs should significantly reduce the vulnerability of motorcycles at signalized intersections.
Resumo:
The favourable scaffold for bone tissue engineering should have desired characteristic features, such as adequate mechanical strength and three-dimensional open porosity, which guarantee a suitable environment for tissue regeneration. In fact, the design of such complex structures like bone scaffolds is a challenge for investigators. One of the aims is to achieve the best possible mechanical strength-degradation rate ratio. In this paper we attempt to use numerical modelling to evaluate material properties for designing bone tissue engineering scaffold fabricated via the fused deposition modelling technique. For our studies the standard genetic algorithm was used, which is an efficient method of discrete optimization. For the fused deposition modelling scaffold, each individual strut is scrutinized for its role in the architecture and structural support it provides for the scaffold, and its contribution to the overall scaffold was studied. The goal of the study was to create a numerical tool that could help to acquire the desired behaviour of tissue engineered scaffolds and our results showed that this could be achieved efficiently by using different materials for individual struts. To represent a great number of ways in which scaffold mechanical function loss could proceed, the exemplary set of different desirable scaffold stiffness loss function was chosen. © 2012 John Wiley & Sons, Ltd.
Resumo:
STUDY DESIGN: Controlled laboratory study. OBJECTIVES: To investigate the reliability and concurrent validity of photographic measurements of hallux valgus angle compared to radiographs as the criterion standard. BACKGROUND: Clinical assessment of hallux valgus involves measuring alignment between the first toe and metatarsal on weight-bearing radiographs or visually grading the severity of deformity with categorical scales. Digital photographs offer a noninvasive method of measuring deformity on an exact scale; however, the validity of this technique has not previously been established. METHODS: Thirty-eight subjects (30 female, 8 male) were examined (76 feet, 54 with hallux valgus). Computer software was used to measure hallux valgus angle from digital records of bilateral weight-bearing dorsoplantar foot radiographs and photographs. One examiner measured 76 feet on 2 occasions 2 weeks apart, and a second examiner measured 40 feet on a single occasion. Reliability was investigated by intraclass correlation coefficients and validity by 95% limits of agreement. The Pearson correlation coefficient was also calculated. RESULTS: Intrarater and interrater reliability were very high (intraclass correlation coefficients greater than 0.96) and 95% limits of agreement between photographic and radiographic measurements were acceptable. Measurements from photographs and radiographs were also highly correlated (Pearson r = 0.96). CONCLUSIONS: Digital photographic measurements of hallux valgus angle are reliable and have acceptable validity compared to weight-bearing radiographs. This method provides a convenient and precise tool in assessment of hallux valgus, while avoiding the cost and radiation exposure associated with radiographs.
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.
Resumo:
This paper describes system identification, estimation and control of translational motion and heading angle for a cost effective open-source quadcopter — the MikroKopter. The dynamics of its built-in sensors, roll and pitch attitude controller, and system latencies are determined and used to design a computationally inexpensive multi-rate velocity estimator that fuses data from the built-in inertial sensors and a low-rate onboard laser range finder. Control is performed using a nested loop structure that is also computationally inexpensive and incorporates different sensors. Experimental results for the estimator and closed-loop positioning are presented and compared with ground truth from a motion capture system.
Resumo:
The question "what causes variety in organisational routines" is of considerable interest to organisational scholars, and one to which this thesis seeks to answer. To this end an evolutionary theory of change is advanced which holds that the dynamics of selection, adaptation and retention explain the creation of variety in organisational routines. A longitudinal, multi-level, multi-case analysis is undertaken in this thesis, using multiple data collection strategies. In each case, different types of variety were identified, according to a typology, together with how selection, adaptation and retention contribute to variety in a positive or negative sense. Methodologically, the thesis makes a contribution to our understanding of variety, as certain types of variety only become evident when examined by specific types of research design. The research also makes a theoretical contribution by explaining how selection, adaptation and retention individually and collectively contribute to variety in organisational routines. Moreover, showing that routines could be stable, diverse, adaptive and dynamic at the same time; is a significant, and novel, theoretical contribution.
Resumo:
The security of power transfer across a given transmission link is typically a steady state assessment. This paper develops tools to assess machine angle stability as affected by a combination of faults and uncertainty of wind power using probability analysis. The paper elaborates on the development of the theoretical assessment tool and demonstrates its efficacy using single machine infinite bus system.
Resumo:
The inquiries to return predictability are traditionally limited to conditional mean, while literature on portfolio selection is replete with moment-based analysis with up to the fourth moment being considered. This paper develops a distribution-based framework for both return prediction and portfolio selection. More specifically, a time-varying return distribution is modeled through quantile regressions and copulas, using quantile regressions to extract information in marginal distributions and copulas to capture dependence structure. A preference function which captures higher moments is proposed for portfolio selection. An empirical application highlights the additional information provided by the distributional approach which cannot be captured by the traditional moment-based methods.
Resumo:
The identification of the primary drivers of stock returns has been of great interest to both financial practitioners and academics alike for many decades. Influenced by classical financial theories such as the CAPM (Sharp, 1964; Lintner, 1965) and APT (Ross, 1976), a linear relationship is conventionally assumed between company characteristics as derived from their financial accounts and forward returns. Whilst this assumption may be a fair approximation to the underlying structural relationship, it is often adopted for the purpose of convenience. It is actually quite rare that the assumptions of distributional normality and a linear relationship are explicitly assessed in advance even though this information would help to inform the appropriate choice of modelling technique. Non-linear models have nevertheless been applied successfully to the task of stock selection in the past (Sorensen et al, 2000). However, their take-up by the investment community has been limited despite the fact that researchers in other fields have found them to be a useful way to express knowledge and aid decision-making...
Resumo:
Drosophila serrata is a member of the montium group, which contains more than 98 species and until recently was considered a subgroup within the melanogaster group. This Drosophila species is an emerging model system for evolutionary quantitative genetics and has been used in studies of species borders, clinal variation and sexual selection. Despite the importance of D. serrata as a model for evolutionary research, our poor understanding of its genome remains a significant limitation. Here, we provide a first-generation gene-based linkage map and a physical map for this species. Consistent with previous studies of other drosophilids we observed strong conservation of genes within chromosome arms homologous with D. melanogaster but major differences in within-arm synteny. These resources will be a useful complement to ongoing genome sequencing efforts and QTL mapping studies in this species
Resumo:
The native Australian fly Drosophila serrata belongs to the highly speciose montium subgroup of the melanogaster species group. It has recently emerged as an excellent model system with which to address a number of important questions, including the evolution of traits under sexual selection and traits involved in climatic adaptation along latitudinal gradients. Understanding the molecular genetic basis of such traits has been limited by a lack of genomic resources for this species. Here, we present the first expressed sequence tag (EST) collection for D. serrata that will enable the identification of genes underlying sexually-selected phenotypes and physiological responses to environmental change and may help resolve controversial phylogenetic relationships within the montium subgroup.
Resumo:
Pronounced phenotypic shifts in island populations are typically attributed to natural selection, but reconstructing heterogeneity in long-term selective regimes remains a challenge. We examined a scenario of divergence proposed for species colonizing a new environment, involving directional selection with a rapid shift to a new optimum and subsequent stabilization. We provide some of the first empirical evidence for this model of evolution using morphological data from three timescales in an island bird, Zosterops lateralis chlorocephalus. In less than four millennia since separation from its mainland counterpart, a substantial increase in body size has occurred and was probably achieved in fewer than 500 generations after colonization. Over four recent decades, morphological traits have fluctuated in size but showed no significant directional trends, suggesting maintenance of a relatively stable phenotype. Finally, estimates of contemporary selection gradients indicated generally weak directional selection. These results provide a rare description of heterogeneity in long-term natural regimes, and caution that observations of current selection may be of limited value in inferring mechanisms of past adaptation due to a lack of constancy even over short time-frames.
Resumo:
The elastic properties of 1D nanostructures such as nanowires are often measured experimentally through actuation of the nanowire at its resonance frequency, and then relating the resonance frequency to the elastic stiffness using elementary beam theory. In the present work, we utilize large scale molecular dynamics simulations to report a novel beat phenomenon in [110]oriented Ag nanowires. The beat phenomenon is found to arise from the asymmetry of the lattice spacing in the orthogonal elementary directions of the [110] nanowire, i.e. the [-110] and [001] directions, which results in two different principal moments of inertia. Because of this, actuations imposed along any other direction are found to decompose into two orthogonal vibrational components based on the actuation angle relative to these two elementary directions, with this phenomenon being generalizable to <110> FCC nanowires of different materials (Cu, Au, Ni, Pd and Pt). The beat phenomenon is explained using a discrete moment of inertia model based on the hard sphere assumption, the model is utilized to show that surface effects enhance the beat phenomenon, while the effect is reduced with increasing nanowires cross-sectional size or aspect ratio. Most importantly, due to the existence of the beat phenomena, we demonstrate that in resonance experiments only a single frequency component is expected to be observed, particularly when the damping ratio is relatively large or very small. Furthermore, for a large range of actuation angles, the lower frequency is more likely to be detected than the higher one, which implies that experimental predictions of Young’s modulus obtained from resonance may in fact be under predictions. The present study therefore has significant implications for experimental interpretations of Young’s modulus as obtained via resonance testing.
Resumo:
Quality based frame selection is a crucial task in video face recognition, to both improve the recognition rate and to reduce the computational cost. In this paper we present a framework that uses a variety of cues (face symmetry, sharpness, contrast, closeness of mouth, brightness and openness of the eye) to select the highest quality facial images available in a video sequence for recognition. Normalized feature scores are fused using a neural network and frames with high quality scores are used in a Local Gabor Binary Pattern Histogram Sequence based face recognition system. Experiments on the Honda/UCSD database shows that the proposed method selects the best quality face images in the video sequence, resulting in improved recognition performance.