207 resultados para BIOLOGICAL REGENERATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incidences of skin cancers resulting from chronic ultraviolet radiation (UVR) exposure are on the incline both in Australia and globally. Hence, the cellular and molecular pathways associated with UVR-induced photocarcinogenesis urgently need to be elucidated, in order to develop more robust preventative and treatment strategies against skin cancers. In vitro investigations into the effects of UVR (in particular the highly-mutagenic UVB wavelength) have, to date, mainly involved the use of cell culture and animal models. However, these models possess biological disparities to native skin, which to some extent have limited their relevance to the in vivo situation. To address this, we characterised a 3-dimensional, tissue-engineered human skin equivalent (HSE) model (consisting of primary human keratinocytes cultured on a dermal-derived scaffold) as a representation of a more physiologically-relevant platform to study keratinocyte responses to UVB. Significantly, we demonstrate that this model retains several important epidermal properties of native skin. Moreover, UVB-irradiation of the HSE constructs was shown to induce key markers of photodamage in the HSE keratinocytes, including the formation of cyclobutane pyrimidine dimers, the activation of apoptotic pathways, the accumulation of p53 and the secretion of inflammatory cytokines. Importantly, we also demonstrate that the UVB-exposed HSE constructs retain the capacity for epidermal repair and regeneration following photodamage. Together, our results demonstrate the potential of this skin equivalent model as a tool to study various aspects of the acute responses of human keratinocytes to UVB radiation damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regeneration of periodontal tissues to cure periodontitis remains a medical challenge. Therefore, it is of great importance to develop a novel biomaterial that could induce cementogenesis and osteogenesis in periodontal tissue engineering. Calcium silicate (Ca–Si) based ceramics have been found to be potential bioactive materials due to their osteostimulatory effect. Recently, it is reported that zirconium modified calcium-silicate-based (Ca3ZrSi2O9) ceramics stimulate cell proliferation and osteogenic differentiation of osteoblasts. However, it is unknown whether Ca3ZrSi2O9 ceramics possess specific cementogenic stimulation for human periodontal ligament cells (hPDLCs) in periodontal tissue regeneration in vitro. The purpose of this study was to investigate whether Ca3ZrSi2O9 ceramic disks and their ionic extracts could stimulate cell growth and cementogenic/osteogenic differentiation of hPDLCs; the possible molecular mechanism involved in this process was also explored by investigating the Wnt/β-catenin signalling pathway of hPDLCs. Our results showed that Ca3ZrSi2O9 ceramic disks supported cell adhesion, proliferation and significantly up-regulated relative alkaline phosphatase (ALP) activity, cementogenic/osteogenic gene expression (CEMP1, CAP, ALP and OPN) and Wnt/β-catenin signalling pathway-related genes (AXIN2 and CTNNB) for hPDLCs, compared to that of β-tricalcium phosphate (β-TCP) bioceramic disks and blank controls. The ionic extracts from Ca3ZrSi2O9 powders also significantly enhanced relative ALP activity, cementogenic/osteogenic and Wnt/β-catenin-related gene expression of hPDLCs. The present results demonstrate that Ca3ZrSi2O9 ceramics are capable of stimulating cementogenic/osteogenic differentiation of hPDLCs possibly via activation of the Wnt/β-catenin signalling pathway, suggesting that Ca3ZrSi2O9 ceramics have the potential to be used for periodontal tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomonitoring has become the ‘gold standard’ in assessing chemical exposures, and plays an important role in risk assessment. The pooling of biological specimens – combining multiple individual specimens into a single sample – can be used in biomonitoring studies to monitor levels of exposure and identify exposure trends, or to identify susceptible populations in a cost-effective manner. Pooled samples provide an estimate of central tendency, and may also reveal information about variation within the population. The development of a pooling strategy requires careful consideration of the type and number of samples collected, the number of pools required, and the number of specimens to combine per pool in order to maximize the type and robustness of the data. Creative pooling strategies can be used to explore exposure-outcome associations, and extrapolation from other larger studies can be useful in identifying elevated exposures in specific individuals. The use of pooled specimens is advantageous as it saves significantly on analytical costs, may reduce the time and resources required for recruitment, and in certain circumstances, allows quantification of samples approaching the limit of detection. In addition, use of pooled samples can provide population estimates while avoiding ethical difficulties that may be associated with reporting individual results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone, a hard biological material, possesses a combination of high stiffness and toughness, even though the main basic building blocks of bone are simply mineral platelets and protein molecules. Bone has a very complex microstructure with at least seven hierachical levels. This unique material characteristic attracts great attention, but the deformation mechanisms in bone have not been well understood. Simulation at nano-length scale such as molecular dynamics (MD) is proven to be a powerful tool to investigate bone nanomechanics for developing new artificial biological materials. This study focuses on the ultra large and thin layer of extrafibrillar protein matrix (thickness = ~ 1 nm) located between mineralized collagen fibrils (MCF). Non-collagenous proteins such as osteopontin (OPN) can be found in this protein matrix, while MCF consists mainly of hydroxyapatite (HA) nanoplatelets (thickness = 1.5 – 4.5 nm). By using molecular dynamics method, an OPN peptide was pulled between two HA mineral platelets with water in presence. Periodic boundary condition (PBC) was applied. The results indicate that the mechanical response of OPN peptide greatly depends on the attractive electrostatics interaction between the acidic residues in OPN peptide and HA mineral surfaces. These bonds restrict the movement of OPN peptide, leading to a high energy dissipation under shear loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Stem cells are regularly cultured under normoxic conditions. However, the physiological oxygen tension in the stem cell niche is known to be as low as 1-2% oxygen, suggesting that hypoxia has a distinct impact on stem cell maintenance. Periodontal ligament cells (PDLCs) and dental pulp cells (DPCs) are attractive candidates in dental tissue regeneration. It is of great interest to know whether hypoxia plays a role in maintaining the stemness and differentiation capacity of PDLCs and DPCs. Methods. PDLCs and DPCs were cultured either in normoxia (20% O2) or hypoxia (2% O2). Cell viability assays were performed and the expressions of pluripotency markers (Oct-4, Sox2, and c-Myc) were detected by qRT-PCR and western blotting. Mineralization, glycosaminoglycan (GAG) deposition, and lipid droplets formation were assessed by Alizarin red S, Safranin O, and Oil red O staining, respectively. Results. Hypoxia did not show negative effects on the proliferation of PDLCs and DPCs. The pluripotency markers and differentiation potentials of PDLCs and DPCs significantly increased in response to hypoxic environment. Conclusions. Our findings suggest that hypoxia plays an important role in maintaining the stemness and differentiation capacity of PDLCs and DPCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone defect treatments can be augmented by mesenchymal stem cell (MSC) based therapies. MSC interaction with the extracellular matrix (ECM) of the surrounding tissue regulates their functional behavior. Understanding of these specific regulatory mechanisms is essential for the therapeutic stimulation of MSC in vivo. However, these interactions are presently only partially understood. This study examined in parallel, for the first time, the effects on the functional behavior of MSCs of 13 ECM components from bone, cartilage and hematoma compared to a control protein, and hence draws conclusions for rational biomaterial design. ECM components specifically modulated MSC adhesion, migration, proliferation, and osteogenic differentiation, for example, fibronectin facilitated migration, adhesion, and proliferation, but not osteogenic differentiation, whereas fibrinogen enhanced adhesion and proliferation, but not migration. Subsequently, the integrin expression pattern of MSCs was determined and related to the cell behavior on specific ECM components. Finally, on this basis, peptide sequences are reported for the potential stimulation of MSC functions. Based on the results of this study, ECM component coatings could be designed to specifically guide cell functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Burns and their associated wound care procedures evoke significant stress and anxiety, particularly for children. Little is known about the body's physiological stress reactions throughout the stages of re-epithelialization following an acute burn injury. Previously, serum and urinary cortisol have been used to measure stress in burn patients, however these measures are not suitable for a pediatric burn outpatient setting. AIM To assess the sensitivity of salivary cortisol and sAA in detecting stress during acute burn wound care procedures and to investigate the body's physiological stress reactions throughout burn re-epithelialization. METHODS Seventy-seven participants aged four to thirteen years who presented with an acute burn injury to the burn center at the Royal Children's Hospital, Brisbane, Australia, were recruited between August 2011 and August 2012. RESULTS Both biomarkers were responsive to the stress of burn wound care procedures. sAA levels were on average 50.2U/ml higher (p<0.001) at 10min post-dressing removal compared to baseline levels. Salivary cortisol levels showed a blunted effect with average levels at ten minutes post dressing removal decreasing by 0.54nmol/L (p<0.001) compared to baseline levels. sAA levels were associated with pain (p=0.021), no medication (p=0.047) and Child Trauma Screening Questionnaire scores at three months post re-epithelialization (p=0.008). Similarly, salivary cortisol was associated with no medication (p<0.001), pain scores (p=0.045) and total body surface area of the burn (p=0.010). CONCLUSION Factors which support the use of sAA over salivary cortisol to assess stress during morning acute burn wound care procedures include; sensitivity, morning clinic times relative to cortisol's diurnal peaks, and relative cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olfactory ensheathing cells (OECs) play an important role in the continuous regeneration of the primary olfactory nervous system throughout life and for regeneration of olfactory neurons after injury. While it is known that several individual OEC subpopulations with distinct properties exist in different anatomical locations, it remains unclear how these different subpopulations respond to a major injury. We have examined the proliferation of OECs from one distinct location, the peripheral accessory olfactory nervous system, following large-scale injury (bulbectomy) in mice. We used crosses of two transgenic reporter mouse lines, S100ß-DsRed and OMP-ZsGreen, to visualise OECs, and main/accessory olfactory neurons, respectively. We surgically removed one olfactory bulb including the accessory olfactory bulb to induce degeneration, and found that accessory OECs in the nerve bundles that terminate in the accessory olfactory bulb responded by increased proliferation with a peak occurring 2 days after the injury. To label proliferating cells we used the thymidine analogue ethynyl deoxyuridine (EdU) using intranasal delivery instead of intraperitoneal injection. We compared and quantified the number of proliferating cells at different regions at one and four days after EdU labelling by the two different methods and found that intranasal delivery method was as effective as intrapeitoneal injection. We demonstrated that accessory OECs actively respond to widespread degeneration of accessory olfactory axons by proliferating. These results have important implications for selecting the source of OECs for neural regeneration therapies and show that intranasal delivery of EdU is an efficient and reliable method for assessing proliferation of olfactory glia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Biological Research on Addiction examines the neurobiological mechanisms of drug use and drug addiction, describing how the brain responds to addictive substances as well as how it is affected by drugs of abuse. The book's four main sections examine behavioral and molecular biology; neuroscience; genetics; and neuroimaging and neuropharmacology as they relate to the addictive process. This volume is especially effective in presenting current knowledge on the key neurobiological and genetic elements in an individual's susceptibility to drug dependence, as well as the processes by which some individuals proceed from casual drug use to drug dependence. Biological Research on Addiction is one of three volumes comprising the 2,500-page series, Comprehensive Addictive Behaviors and Disorders. This series provides the most complete collection of current knowledge on addictive behaviors and disorders to date. In short, it is the definitive reference work on addictions."--publisher website

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic neuropathy is associated with increased morbidity and mortality. To date, limited data in subjects with impaired glucose tolerance and diabetes demonstrate nerve fiber repair after intervention. This may reflect a lack of efficacy of the interventions but may also reflect difficulty of the tests currently deployed to adequately assess nerve fiber repair, particularly in short-term studies. Corneal confocal microscopy (CCM) represents a novel noninvasive means to quantify nerve fiber damage and repair. Fifteen type 1 diabetic patients undergoing simultaneous pancreas-kidney transplantation (SPK) underwent detailed assessment of neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy, corneal sensitivity, and CCM at baseline and at 6 and 12 months after successful SPK. At baseline, diabetic patients had a significant neuropathy compared with control subjects. After successful SPK there was no significant change in neurologic impairment, neurophysiology, QST, corneal sensitivity, and intraepidermal nerve fiber density (IENFD). However, CCM demonstrated significant improvements in corneal nerve fiber density, branch density, and length at 12 months. Normalization of glycemia after SPK shows no significant improvement in neuropathy assessed by the neurologic deficits, QST, electrophysiology, and IENFD. However, CCM shows a significant improvement in nerve morphology, providing a novel noninvasive means to establish early nerve repair that is missed by currently advocated assessment techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we describe the benefits of a performance-based approach to modeling biological systems for use in robotics. Specifically, we describe the RatSLAM system, a computational model of the navigation processes thought to drive navigation in a part of the rodent brain called the hippocampus. Unlike typical computational modeling approaches, which focus on biological fidelity, RatSLAM’s development cycle has been driven primarily by performance evaluation on robots navigating in a wide variety of challenging, real world environments. We briefly describe three seminal results, two in robotics and one in biology. In addition, we present current research on brain-inspired learning algorithms with the aim of enabling a robot to autonomously learn how best to use its sensor suite to navigate, without requiring any specific knowledge of the robot, sensor types or environment characteristics. Our aim is to drive discussion on the merits of practical, performance-focused implementations of biological models in robotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteo- conductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineer- ing and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transplantation of autologous bone graft as a treatment for large bone defects has the limitation of harvesting co-morbidity and limited availability. This drives the orthopaedic research community to develop bone graft substitutes. Routinely, supra-physiological doses of bone morphogenetic proteins (BMPs) are applied perpetuating concerns over undesired side effects and cost of BMPs. We therefore aimed to design a composite scaffold that allows maintenance of protein bioactivity and enhances growth factor retention at the implantation site. Critical-sized defects in sheep tibiae were treated with the autograft and with two dosages of rhBMP-7, 3.5 mg and 1.75 mg, embedded in a slowly degradable medical grade poly(ε-caprolactone) (PCL) scaffold with β-tricalcium phosphate microparticles (mPCL-TCP). Specimens were characterised by biomechanical testing, microcomputed tomography and histology. Bridging was observed within 3 months for the autograft and both rhBMP-7 treatments. No significant difference was observed between the low and high rhBMP-7 dosages or between any of the rhBMP-7 groups and autograft implantation. Scaffolds alone did not induce comparable levels of bone formation compared to the autograft and rhBMP-7 groups. In summary, the mPCL-TCP scaffold with the lower rhBMP-7 dose led to equivalent results to autograft transplantation or the high BMP dosage. Our data suggest a promising clinical future for BMP application in scaffold-based bone tissue engineering, lowering and optimising the amount of required BMP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Regenerative endodontics is an innovative treatment concept aiming to regenerate pulp, dentin and root structures. In the diseased or necrotic tooth, the limitation in vascular supply renders successful tissue regeneration/generation in a whole tooth challenging. The aim of this study is to evaluate the ability of vascularized tissue to develop within a pulpless tooth using tissue engineering techniques. Materials and methods A pulpless tooth chamber, filled with collagen I gel containing isolated rat dental pulp cells (DPC) and angiogenic growth factors, was placed into a hole created in the femoral cortex or into its own tooth socket, respectively. The gross, histological and biochemical characteristics of the de novo tissue were evaluated at 4 and 8weeks post-transplantation. Results Tooth revascularization and tissue generation was observed only in the femur group, confirming the important role of vascular supply in tissue regeneration. The addition of cells and growth factors significantly promoted connective tissue production in the tooth chamber. Conclusion Successful revascularization and tissue regeneration in this model demonstrate the importance of a direct vascular supply and the advantages of a stem cell approach. © 2012 John Wiley & Sons A/S.