205 resultados para Air quality monitoring stations
Resumo:
Water quality data are often collected at different sites over time to improve water quality management. Water quality data usually exhibit the following characteristics: non-normal distribution, presence of outliers, missing values, values below detection limits (censored), and serial dependence. It is essential to apply appropriate statistical methodology when analyzing water quality data to draw valid conclusions and hence provide useful advice in water management. In this chapter, we will provide and demonstrate various statistical tools for analyzing such water quality data, and will also introduce how to use a statistical software R to analyze water quality data by various statistical methods. A dataset collected from the Susquehanna River Basin will be used to demonstrate various statistical methods provided in this chapter. The dataset can be downloaded from website http://www.srbc.net/programs/CBP/nutrientprogram.htm.
Resumo:
The issue of whether improved building services such as air quality, provision of daylight, thermal comfort etc, have a positive impact on the health and productivity of building occupants is still an open question. There is significant anecdotal evidence supporting the notion that health and productivity of building occupants can be improved by improving the quality of the indoor environment, but there are actually few published quantitative studies to substantiate this contention. This paper reports on a comprehensive review of the worldwide literature which relates health of building occupants with the different aspects of the indoor environment which are believed to impact of these issues, with a particular focus on studies in Australia, The paper analyses the existing research and identifies the key deficiencies in our existing understanding of this problem. The key focus of this research is office and school buildings, but the scope of the literature surveyed includes all commercial buildings, including industrial buildings. There is a notable absence of detailed studies on this link in Australian buildings, although there are studies on thermal comfort, and a number of studies on indoor air quality in Australia, which do not make the connection to health and productivity. Many international studies have focused on improved lighting, and in particular the provision of daylight in buildings, but again there are few studies in Australia which focus in this area.
Resumo:
As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify indoor exposure to submicrometer particles and PM2.5 for the inhabitants of 14 houses. Particle concentrations were measured simultaneously for more than 48 hours in the kitchens of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak). The occupants of the houses were asked to fill in a diary, noting the time and duration of any activity occurring throughout the house during measurement, as well as their presence or absence from home. From the time series concentration data and the information about indoor activities, exposure to the inhabitants of the houses was calculated for the entire time they spent at home as well as during indoor activities resulting in particle generation. The results show that the highest median concentration level occurred during cooking periods for both particle number concentration (47.5´103 particles cm-3) and PM2.5 concentration (13.4 mg m-3). The highest residential exposure period was the sleeping period for both particle number exposure (31%) and PM2.5 exposure (45.6%). The percentage of the average residential particle exposure level in total 24h particle exposure level was approximating 70% for both particle number and PM2.5 exposure.
Resumo:
Many factors affect the airflow patterns, thermal comfort, contaminant removal efficiency and indoor air quality at individual workstations in office buildings. In this study, four ventilation systems were used in a test chamber designed to represent an area of a typical office building floor and reproduce the real characteristics of a modern office space. Measurements of particle concentration and thermal parameters (temperature and velocity) were carried out for each of the following types of ventilation systems: a) conventional air distribution system with ceiling supply and return; b) conventional air distribution system with ceiling supply and return near the floor; c) underfloor air distribution system; and d) split system. The measurements aimed to analyse the particle removal efficiency in the breathing zone and the impact of particle concentration on an individual at the workstation. The efficiency of the ventilation system was analysed by measuring particle size and concentration, ventilation effectiveness and the Indoor/Outdoor ratio. Each ventilation system showed different airflow patterns and the efficiency of each ventilation system in the removal of the particles in the breathing zone showed no correlation with particle size and the various methods of analyses used.
Resumo:
Information and communication technologies (ICTs) had occupied their position on knowledge management and are now evolving towards the era of self-intelligence (Klosterman, 2001). In the 21st century ICTs for urban development and planning are imperative to improve the quality of life and place. This includes the management of traffic, waste, electricity, sewerage and water quality, monitoring fire and crime, conserving renewable resources, and coordinating urban policies and programs for urban planners, civil engineers, and government officers and administrators. The handling of tasks in the field of urban management often requires complex, interdisciplinary knowledge as well as profound technical information. Most of the information has been compiled during the last few years in the form of manuals, reports, databases, and programs. However frequently, the existence of these information and services are either not known or they are not readily available to the people who need them. To provide urban administrators and the public with comprehensive information and services, various ICTs are being developed. In early 1990s Mark Weiser (1993) proposed Ubiquitous Computing project at the Xerox Palo Alto Research Centre in the US. He provides a vision of a built environment which digital networks link individual residents not only to other people but also to goods and services whenever and wherever they need (Mitchell, 1999). Since then the Republic of Korea (ROK) has been continuously developed national strategies for knowledge based urban development (KBUD) through the agenda of Cyber Korea, E-Korea and U-Korea. Among abovementioned agendas particularly the U-Korea agenda aims the convergence of ICTs and urban space for a prosperous urban and economic development. U-Korea strategies create a series of U-cities based on ubiquitous computing and ICTs by a means of providing ubiquitous city (U-city) infrastructure and services in urban space. The goals of U-city development is not only boosting the national economy but also creating value in knowledge based communities. It provides opportunity for both the central and local governments collaborate to U-city project, optimize information utilization, and minimize regional disparities. This chapter introduces the Korean-led U-city concept, planning, design schemes and management policies and discusses the implications of U-city concept in planning for KBUD.
Resumo:
This thesis focuses on the volatile and hygroscopic properties of mixed aerosol species. In particular, the influence organic species of varying solubility have upon seed aerosols. Aerosol studies were conducted at the Paul Scherrer Institut Laboratory for Atmospheric Chemistry (PSI-LAC, Villigen, Switzerland) and at the Queensland University of Technology International Laboratory for Air Quality and Health (QUT-ILAQH, Brisbane, Australia). The primary measurement tool employed in this program was the Volatilisation and Hygroscopicity Tandem Differential Mobility Analyser (VHTDMA - Johnson et al. 2004). This system was initially developed at QUT within the ILAQH and was completely re-developed as part of this project (see Section 1.4 for a description of this process). The new VHTDMA was deployed to the PSI-LAC where an analysis of the volatile and hygroscopic properties of ammonium sulphate seeds coated with organic species formed from the photo-oxidation of á-pinene was conducted. This investigation was driven by a desire to understand the influence of atmospherically prevalent organics upon water uptake by material with cloud forming capabilities. Of particular note from this campaign were observed influences of partially soluble organic coatings upon inorganic ammonium sulphate seeds above and below their deliquescence relative humidity (DRH). Above the DRH of the seed increasing the volume fraction of the organic component was shown to reduce the water uptake of the mixed particle. Below the DRH the organic was shown to activate the water uptake of the seed. This was the first time this effect had been observed for á-pinene derived SOA. In contrast with the simulated aerosols generated at the PSI-LAC a case study of the volatile and hygroscopic properties of diesel emissions was undertaken. During this stage of the project ternary nucleation was shown, for the first time, to be one of the processes involved in formation of diesel particulate matter. Furthermore, these particles were shown to be coated with a volatile hydrophobic material which prevented the water uptake of the highly hygroscopic material below. This result was a first and indicated that previous studies into the hygroscopicity of diesel emission had erroneously reported the particles to be hydrophobic. Both of these results contradict the previously upheld Zdanovksii-Stokes-Robinson (ZSR) additive rule for water uptake by mixed species. This is an important contribution as it adds to the weight of evidence that limits the validity of this rule.
Resumo:
Many urban developments are implementing Water Sensitive Urban Design (WSUD) strategies to attenuate flows and decrease pollutant loads carried by stormwater runoff. A water quality monitoring project was undertaken at the residential development of ‘Coomera Waters’ on the Gold Coast in Queensland to assess the effectiveness of a bioretention swale, a constructed wetland and a bioretention basin in treating stormwater runoff before it enters protected Melaleuca wetlands. This paper compares the effectiveness of these WSUD devices in reducing flow frequency, peak flow, and stormwater volume leaving the WSUD systems. The pollutant loads reductions are also described and the concentrations of pollutants are compared to the trigger values derived from the ANZECC (2000) Guidelines.
Resumo:
This report presents the results of a random telephone survey of 500 adult residents of Mount Isa, conducted in early November 2007. The study was funded by Xstrata Mount Isa Mines. The primary aim of the survey was to collect data about community perceptions and experiences of air quality in Mount Isa and to compare these results with those of a similar survey conducted in 2000 (MacLennan, Lloyd & Hensley, 2000). Both surveys also included questions relating to other aspects of the Mount Isa environment (e.g. water quality, heat, amount of greenery) as well as questions aimed at ascertaining respondents’ general attitudes towards environmental protection.
Resumo:
Actions Towards Sustainable Outcomes Environmental Issues/Principal Impacts The increasing urbanisation of cities brings with it several detrimental consequences, such as: • Significant energy use for heating and cooling many more buildings has led to urban heat islands and increased greenhouse gas emissions. • Increased amount of hard surfaces, which not only contributes to higher temperatures in cities, but also to increased stormwater runoff. • Degraded air quality and noise. • Health and general well-being of people is frequently compromised, by inadequate indoor air quality. • Reduced urban biodiversity. Basic Strategies In many design situations, boundaries and constraints limit the application of cutting EDGe actions. In these circumstances, designers should at least consider the following: • Living walls are an emerging technology, and many Australian examples function more as internal feature walls. However,as understanding of the benefits and construction of living walls develops this technology could be part of an exterior facade that enhances a building’s thermal performance. • Living walls should be designed to function with an irrigation system using non-potable water. Cutting EDGe Strategies • Living walls can be part of a design strategy that effectively improves the thermal performance of a building, thereby contributing to lower energy use and greenhouse gas emissions. • Including living walls in the initial stages of design would provide greater flexibility to the design, especially of the facade, structural supports, mechanical ventilation and watering systems, thus lowering costs. • Designing a building with an early understanding of living walls can greatly reduce maintenance costs. • Including plant species and planting media that would be able to remove air impurities could contribute to improved indoor air quality, workplace productivity and well-being. Synergies and References • Living walls are a key research topic at the Centre for Subtropical Design, Queensland University of Technology: http://www.subtropicaldesign.bee.qut.edu.au • BEDP Environment Design Guide: DES 53: Roof and Facade Gardens • BEDP Environment Design Guide: GEN 4: Positive Development – Designing for Net Positive Impacts (see green scaffolding and green space frame walls). • Green Roofs Australia: www.greenroofs.wordpress.com • Green Roofs for Healthy Cities USA: www.greenroofs.org
Resumo:
Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.
Resumo:
The effects of particulate matter on environment and public health have been widely studied in recent years. A number of studies in the medical field have tried to identify the specific effect on human health of particulate exposure, but agreement amongst these studies on the relative importance of the particles’ size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. Current air quality standards only regulate the mass of particulate matter less than 10 μm in aerodynamic diameter (PM10) and less than 2.5 μm (PM2.5). The most reliable method used in measuring Total Suspended Particles (TSP), PM10, PM2.5 and PM1 is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique however, neglects the possibility to correlate short term intra-day variations of atmospheric parameters that can influence ambient particle concentration and size distribution (emission strengths of particle sources, temperature, relative humidity, wind direction and speed and mixing height) as well as human activity patterns that may also vary over time periods considerably shorter than 24 hours. A continuous method to measure the number size distribution and total number concentration in the range 0.014 – 20 μm is the tandem system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this paper, an uncertainty budget model of the measurement of airborne particle number, surface area and mass size distributions is proposed and applied for several typical aerosol size distributions. The estimation of such an uncertainty budget presents several difficulties due to i) the complexity of the measurement chain, ii) the fact that SMPS and APS can properly guarantee the traceability to the International System of Measurements only in terms of number concentration. In fact, the surface area and mass concentration must be estimated on the basis of separately determined average density and particle morphology. Keywords: SMPS-APS tandem system, gravimetric reference method, uncertainty budget, ultrafine particles.
Resumo:
The importance of sustainable development has been internationally recognized and the principles have been widely used as an impetus for promoting housing sustainability. In the situation of mixed-use urban development in close proximity to heavy industrial areas in Malaysia, rising incomes are developing hand in hand with higher expectations for better and more sustainable housing designs. Negative environmental impacts due current deficiency in Malaysia’s approach to the implementation of sustainable development principles can be seen in this case study of the Pasir Gudang Industrial Area in Malaysia. This study aimed to highlight the level of residents’ satisfaction with living near the industrial area, and to relate their awareness of the relevance of sustainable principles with indoor environmental conditions, which found that the residents’ has limited understanding of the environmental problems in their indoor living conditions and in their neighborhoods. This study has suggested that proactive and integrated involvement by housing authorities from all levels of government in Malaysia should be encouraged in order to rationalise the approaches to develop better planning solutions for such mixed-used urban developments. This initiative should then encourage housing vendors to provide innovative ‘smart’ technological changes to their projects and so, to achieve a new direction in sustainable housing development.
Resumo:
Sustainable infrastructure demands that declared principles of sustainability are enacted in the processes of its implementation. However, a problem arises if the concept of sustainability is not thoroughly scrutinised in the planning process. The public interest could be undermined when the rhetoric of sustainability is used to substantiate a proposed plan. This chapter analyses the manifestation of sustainable development in the Boggo Road Busway Plan in Brisbane, Australia against the sustainability agenda set in the South East Queensland Regional and Transport Plans. Although the construction of the Busway was intended to improve public transport access in the region, its implementation drew significant environmental concerns. Local community groups contested the ‘sustainability’ concept deployed in Queensland’s infrastructure planning. Their challenges resulted in important concessions in the delivery of the Busway plan. This case demonstrates that principles of sustainable infrastructure should be measurable and that local communities be better informed in order to fulfil the public interest in regional planning.