376 resultados para Acquired pellicle
Resumo:
Carbon nanotubes (CNTs), experimentally observed for the first time twenty years ago, have triggered an unprecedented research effort, on the account of their astonishing structural, mechanical and electronic properties. Unfortunately, the current inability in predicting the CNTs’ properties and the difficulty in controlling their position on a substrate are often limiting factors for the application of this material in actual devices. This research aims at the creation of specific methodologies for controlled synthesis of CNTs, leading to effectively employ them in various fields of electronics, e.g. photovoltaics. Focused Ion Beam (FIB) patterning of Si surfaces is here proposed as a means for ordering the assembly of vertical-aligned CNTs. With this technique, substrates with specific nano-structured morphologies have been prepared, enabling a high degree of control over CNTs’ position and size. On these nano-structured substrates, the growth of CNTs has been realized by chemical vapor deposition (CVD), i.e. thermal decomposition of hydrocarbon gases over a heated catalyst. The most common materials used as catalysts in CVD are transition metals like Fe and Ni; however, their presence in the CNT products often results in shortcomings for electronic applications, especially for those based on silicon, being the metallic impurities incompatible with very-large-scale integration (VLSI) technology. In the present work the role of Ge dots as an alternative catalysts for CNTs synthesis on Si substrates has been thoroughly assessed, finding a close connection between the catalytic activity of such material and the CVD conditions, which can affect both size and morphology of the dots. Successful CNT growths from Ge dots have been obtained by CVD at temperatures ranging from 750 to 1000°C, with mixtures of acetylene and hydrogen in an argon carrier gas. The morphology of the Si surface is observed to play a crucial role for the outcome of the CNT synthesis: natural (i.e. chemical etching) and artificial (i.e. FIB patterning, nanoindentation) means of altering this morphology in a controlled way have been then explored to optimize the CNTs yield. All the knowledge acquired in this study has been finally applied to synthesize CNTs on transparent conductive electrodes (indium-tin oxide, ITO, coated glasses), for the creation of a new class of anodes for organic photovoltaics. An accurate procedure has been established which guarantees a controlled inclusion of CNTs on ITO films, preserving their optical and electrical properties. By using this set of conditions, a CNTenhanced electrode has been built, contributing to improve the power conversion efficiency of polymeric solar cells.
Resumo:
The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.
Resumo:
Research has established that firms' IT-related capabilities at a point in time explain IT-related performance differences across firms. IT resources, however, are dynamic, and evolve at an exponential rate. This means we need to understand how to sustain firms' existing capabilities to leverage opportunities offered by new IT resources. Wet suggests a higher-level resource that can sustain firms' existing IT-related capabilities. Second, we report on the development of a valid and reliable measurement instrument for measuring this higher-level resource in four stages, which includes expert feedback and a field test. The validated instrument would be useful in extending the IT business value studies to investigate how firms can sustain their IT-related capabilities. This effort will provide a deeper understanding of how firms can secure sustainable IT-related business value from their acquired IT resources.
Resumo:
In a commercial environment, it is advantageous to know how long it takes customers to move between different regions, how long they spend in each region, and where they are likely to go as they move from one location to another. Presently, these measures can only be determined manually, or through the use of hardware tags (i.e. RFID). Soft biometrics are characteristics that can be used to describe, but not uniquely identify an individual. They include traits such as height, weight, gender, hair, skin and clothing colour. Unlike traditional biometrics, soft biometrics can be acquired by surveillance cameras at range without any user cooperation. While these traits cannot provide robust authentication, they can be used to provide identification at long range, and aid in object tracking and detection in disjoint camera networks. In this chapter we propose using colour, height and luggage soft biometrics to determine operational statistics relating to how people move through a space. A novel average soft biometric is used to locate people who look distinct, and these people are then detected at various locations within a disjoint camera network to gradually obtain operational statistics
Resumo:
Newly licensed drivers on a provisional or intermediate licence have the highest crash risk when compared with any other group of drivers. In comparison, learner drivers have the lowest crash risk. Graduated driver licensing is one countermeasure that has been demonstrated to effectively reduce the crashes of novice drivers. This thesis examined the graduated driver licensing systems in two Australian states in order to better understand the behaviour of learner drivers, provisional drivers and the supervisors of learner drivers. By doing this, the thesis investigated the personal, social and environmental influences on novice driver behaviour as well as providing effective baseline data against which to measure subsequent changes to the licensing systems. In the first study, conducted prior to the changes to the graduated driver licensing system introduced in mid-2007, drivers who had recently obtained their provisional licence in Queensland and New South Wales were interviewed by telephone regarding their experiences while driving on their learner licence. Of the 687 eligible people approached to participate at driver licensing centres, 392 completed the study representing a response rate of 57.1 per cent. At the time the data was collected, New South Wales represented a more extensive graduated driver licensing system when compared with Queensland. The results suggested that requiring learners to complete a mandated number of hours of supervised practice impacts on the amount of hours that learners report completing. While most learners from New South Wales reported meeting the requirement to complete 50 hours of practice, it appears that many stopped practising soon after this goal was achieved. In contrast, learners from Queensland, who were not required to complete a specific number of hours at the time of the survey, tended to fall into three groups. The first group appeared to complete the minimum number of hours required to pass the test (less than 26 hours), the second group completed 26 to 50 hours of supervised practice while the third group completed significantly more practice than the first two groups (over 100 hours of supervised practice). Learner drivers in both states reported generally complying with the road laws and were unlikely to report that they had been caught breaking the road rules. They also indicated that they planned to obey the road laws once they obtained their provisional licence. However, they were less likely to intend to comply with recommended actions to reduce crash risk such as limiting their driving at night. This study also identified that there were relatively low levels of unaccompanied driving (approximately 15 per cent of the sample), very few driving offences committed (five per cent of the sample) and that learner drivers tended to use a mix of private and professional supervisors (although the majority of practice is undertaken with private supervisors). Consistent with the international literature, this study identified that very few learner drivers had experienced a crash (six per cent) while on their learner licence. The second study was also conducted prior to changes to the graduated driver licensing system and involved follow up interviews with the participants of the first study after they had approximately 21 months driving experience on their provisional licence. Of the 392 participants that completed the first study, 233 participants completed the second interview (representing a response rate of 59.4 per cent). As with the first study, at the time the data was collected, New South Wales had a more extensive graduated driver licensing system than Queensland. For instance, novice drivers from New South Wales were required to progress through two provisional licence phases (P1 and P2) while there was only one provisional licence phase in Queensland. Among the participants in this second study, almost all provisional drivers (97.9 per cent) owned or had access to a vehicle for regular driving. They reported that they were unlikely to break road rules, such as driving after a couple of drinks, but were also unlikely to comply with recommended actions, such as limiting their driving at night. When their provisional driving behaviour was compared to the stated intentions from the first study, the results suggested that their intentions were not a strong predictor of their subsequent behaviour. Their perception of risk associated with driving declined from when they first obtained their learner licence to when they had acquired provisional driving experience. Just over 25 per cent of participants in study two reported that they had been caught committing driving offences while on their provisional licence. Nearly one-third of participants had crashed while driving on a provisional licence, although few of these crashes resulted in injuries or hospitalisations. To complement the first two studies, the third study examined the experiences of supervisors of learner drivers, as well as their perceptions of their learner’s experiences. This study was undertaken after the introduction of the new graduated driver licensing systems in Queensland and New South Wales in mid- 2007, providing insights into the impacts of these changes from the perspective of supervisors. The third study involved an internet survey of 552 supervisors of learner drivers. Within the sample, approximately 50 per cent of participants supervised their own child. Other supervisors of the learner drivers included other parents or stepparents, professional driving instructors and siblings. For two-thirds of the sample, this was the first learner driver that they had supervised. Participants had provided an average of 54.82 hours (sd = 67.19) of supervision. Seventy-three per cent of participants indicated that their learners’ logbooks were accurate or very accurate in most cases, although parents were more likely than non-parents to report that their learners’ logbook was accurate (F (1,546) = 7.74, p = .006). There was no difference between parents and non-parents regarding whether they believed the log book system was effective (F (1,546) = .01, p = .913). The majority of the sample reported that their learner driver had had some professional driving lessons. Notwithstanding this, a significant proportion (72.5 per cent) believed that parents should be either very involved or involved in teaching their child to drive, with parents being more likely than non-parents to hold this belief. In the post mid-2007 graduated driver licensing system, Queensland learner drivers are able to record three hours of supervised practice in their log book for every hour that is completed with a professional driving instructor, up to a total of ten hours. Despite this, there was no difference identified between Queensland and New South Wales participants regarding the amount of time that they reported their learners spent with professional driving instructors (X2(1) = 2.56, p = .110). Supervisors from New South Wales were more likely to ensure that their learner driver complied with the road laws. Additionally, with the exception of drug driving laws, New South Wales supervisors believed it was more important to teach safety-related behaviours such as remaining within the speed limit, car control and hazard perception than those from Queensland. This may be indicative of more intensive road safety educational efforts in New South Wales or the longer time that graduated driver licensing has operated in that jurisdiction. However, other factors may have contributed to these findings and further research is required to explore the issue. In addition, supervisors reported that their learner driver was involved in very few crashes (3.4 per cent) and offences (2.7 per cent). This relatively low reported crash rate is similar to that identified in the first study. Most of the graduated driver licensing research to date has been applied in nature and lacked a strong theoretical foundation. These studies used Akers’ social learning theory to explore the self-reported behaviour of novice drivers and their supervisors. This theory was selected as it has previously been found to provide a relatively comprehensive framework for explaining a range of driver behaviours including novice driver behaviour. Sensation seeking was also used in the first two studies to complement the non-social rewards component of Akers’ social learning theory. This program of research identified that both Akers’ social learning theory and sensation seeking were useful in predicting the behaviour of learner and provisional drivers over and above socio-demographic factors. Within the first study, Akers’ social learning theory accounted for an additional 22 per cent of the variance in learner driver compliance with the law, over and above a range of socio-demographic factors such as age, gender and income. The two constructs within Akers’ theory which were significant predictors of learner driver compliance were the behavioural dimension of differential association relating to friends, and anticipated rewards. Sensation seeking predicted an additional six per cent of the variance in learner driver compliance with the law. When considering a learner driver’s intention to comply with the law while driving on a provisional licence, Akers’ social learning theory accounted for an additional 10 per cent of the variance above socio-demographic factors with anticipated rewards being a significant predictor. Sensation seeking predicted an additional four per cent of the variance. The results suggest that the more rewards individuals anticipate for complying with the law, the more likely they are to obey the road rules. Further research is needed to identify which specific rewards are most likely to encourage novice drivers’ compliance with the law. In the second study, Akers’ social learning theory predicted an additional 40 per cent of the variance in self-reported compliance with road rules over and above socio-demographic factors while sensation seeking accounted for an additional five per cent of the variance. A number of Aker’s social learning theory constructs significantly predicted provisional driver compliance with the law, including the behavioural dimension of differential association for friends, the normative dimension of differential association, personal attitudes and anticipated punishments. The consistent prediction of additional variance by sensation seeking over and above the variables within Akers’ social learning theory in both studies one and two suggests that sensation seeking is not fully captured within the non social rewards dimension of Akers’ social learning theory, at least for novice drivers. It appears that novice drivers are strongly influenced by the desire to engage in new and intense experiences. While socio-demographic factors and the perception of risk associated with driving had an important role in predicting the behaviour of the supervisors of learner drivers, Akers’ social learning theory provided further levels of prediction over and above these factors. The Akers’ social learning theory variables predicted an additional 14 per cent of the variance in the extent to which supervisors ensured that their learners complied with the law and an additional eight per cent of the variance in the supervisors’ provision of a range of practice experiences. The normative dimension of differential association, personal attitudes towards the use of professional driving instructors and anticipated rewards were significant predictors for supervisors ensuring that their learner complied with the road laws, while the normative dimension was important for range of practice. This suggests that supervisors who engage with other supervisors who ensure their learner complies with the road laws and provide a range of practice to their own learners are more likely to also engage in these behaviours. Within this program of research, there were several limitations including the method of recruitment of participants within the first study, the lower participation rate in the second study, an inability to calculate a response rate for study three and the use of self-report data for all three studies. Within the first study, participants were only recruited from larger driver licensing centres to ensure that there was a sufficient throughput of drivers to approach. This may have biased the results due to the possible differences in learners that obtain their licences in locations with smaller licensing centres. Only 59.4 per cent of the sample in the first study completed the second study. This may be a limitation if there was a common reason why those not participating were unable to complete the interview leading to a systematic impact on the results. The third study used a combination of a convenience and snowball sampling which meant that it was not possible to calculate a response rate. All three studies used self-report data which, in many cases, is considered a limitation. However, self-report data may be the only method that can be used to obtain some information. This program of research has a number of implications for countermeasures in both the learner licence phase and the provisional licence phase. During the learner phase, licensing authorities need to carefully consider the number of hours that they mandate learner drivers must complete before they obtain their provisional driving licence. If they mandate an insufficient number of hours, there may be inadvertent negative effects as a result of setting too low a limit. This research suggests that logbooks may be a useful tool for learners and their supervisors in recording and structuring their supervised practice. However, it would appear that the usage rates for logbooks will remain low if they remain voluntary. One strategy for achieving larger amounts of supervised practice is for learner drivers and their supervisors to make supervised practice part of their everyday activities. As well as assisting the learner driver to accumulate the required number of hours of supervised practice, it would ensure that they gain experience in the types of environments that they will probably encounter when driving unaccompanied in the future, such as to and from education or work commitments. There is also a need for policy processes to ensure that parents and professional driving instructors communicate effectively regarding the learner driver’s progress. This is required as most learners spend at least some time with a professional instructor despite receiving significant amounts of practice with a private supervisor. However, many supervisors did not discuss their learner’s progress with the driving instructor. During the provisional phase, there is a need to strengthen countermeasures to address the high crash risk of these drivers. Although many of these crashes are minor, most involve at least one other vehicle. Therefore, there are social and economic benefits to reducing these crashes. If the new, post-2007 graduated driver licensing systems do not significantly reduce crash risk, there may be a need to introduce further provisional licence restrictions such as separate night driving and peer passenger restrictions (as opposed to the hybrid version of these two restrictions operating in both Queensland and New South Wales). Provisional drivers appear to be more likely to obey some provisional licence laws, such as lower blood alcohol content limits, than others such as speed limits. Therefore, there may be a need to introduce countermeasures to encourage provisional drivers to comply with specific restrictions. When combined, these studies provided significant information regarding graduated driver licensing programs. This program of research has investigated graduated driver licensing utilising a cross-sectional and longitudinal design in order to develop our understanding of the experiences of novice drivers that progress through the system in order to help reduce crash risk once novice drivers commence driving by themselves.
Resumo:
Summary: Objective: We performed spike triggered functional MRI (fMRI) in a 12 year old girl with Benign Epilepsy with Centro-temporal Spikes (BECTS) and left-sided spikes. Our aim was to demonstrate the cerebral origin of her interictal spikes. Methods: EEG was recorded within the 3 Tesla MRI. Whole brain fMRI images were acquired, beginning 2–3 seconds after spikes. Baseline fMRI images were acquired when there were no spikes for 20 seconds. Image sets were compared with the Student's t-test. Results: Ten spike and 20 baseline brain volumes were analysed. Focal activiation was seen in the inferior left sensorimotor cortex near the face area. The anterior cingulate was more active during baseline than spikes. Conclusions: Left sided epileptiform activity in this patient with BECTS is associated with fMRI activation in the left face region of the somatosensory cortex, which would be consistent with the facial sensorimotor involvement in BECT seizures. The presence of BOLD signal change in other regions raises the possibility that the scalp recorded field of this patient with BECTs may reflect electrical change in more than one brain region.
Resumo:
Purpose: This study used magnetic resonance spectroscopy (MRS) to examine metabolite abnormalities in the temporal and frontal lobe of patients with temporal lobe epilepsy (TLE) of differing severity. Methods: We investigated myoinositol in TLE by using short-echo MRS in 34 TLE patients [26 late onset (LO-TLE), eight hippocampal sclerosis (HS-TLE)], and 16 controls. Single-voxel short-echo (35 ms) MR spectra of temporal and frontal lobes were acquired at 1.5 T and analyzed by using LCModel. Results: The temporal lobe ipsilateral to seizure origin in HS-TLE, but not LO-TLE, had reduced N-acetylaspartate (NA) and elevated myoinositol (MI; HS-TLE NA, 7.8 ± 1.9 mM, control NA, 9.2 ± 1.3 mM; p < 0.05; HS-TLE MI, 6.1 ± 1.6 mM, control mI 4.9 ± 0.8 mM, p< 0.05). Frontal lobe MI was low in both patient groups (LO-TLE, 4.3 ± 0.8 mM; p < 0.05; HS-TLE, 3.6 ±.05 mM; p < 0.001; controls, 4.8 ± 0.5 mM). Ipsilateral frontal lobes had lower MI (3.8 ± 0.7 mM; p < 0.01) than contralateral frontal lobes (4.3 ± 0.8 mM; p < 0.05). Conclusions: MI changes may distinguish between the seizure focus, where MI is increased, and areas of seizure spread where MI is decreased.
Resumo:
Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.
Resumo:
A collaborative research project conducted by five Australian universities inquired into the philosophy and motivation for Assurance of Learning (AoL) as a process of education evaluation. Associate Deans Teaching and Learning representing Business schools from twenty-five universities across Australia participated in telephone interviews. Data was analysed using NVIVO9. Results indicated that articulated rationale for AoL was both ensuring that students had acquired the attributes and skills the universities claimed they had, and the philosophy of continuous improvement. AoL was motivated both by ritualistic objectives to satisfy accreditation requirements and virtuous agendas for quality improvement. Closing-the-loop was emphasised, but was mostly wishful thinking for next steps beyond data collection and reporting. AoL was conceptualised as one element within the larger context of quality review, but there was no evidence of comprehensive frameworks or strategic plans.
Resumo:
The common brown leafhopper Orosius orientalis (Hemiptera: Cicadellidae) is a polyphagous vector of a range of economically important pathogens, including phytoplasmas and viruses, which infect a diverse range of crops. Studies on the plant penetration behaviour by O. orientalis were conducted using the electrical penetration graph (EPG) technique to assist in the characterisation of pathogen acquisition and transmission. EPG waveforms representing different probing activities were acquired from adult O. orientalis probing in planta, using two host species, tobacco Nicotiana tabacum and bean Phaseolus vulgaris, and in vitro using a simple sucrose-based artificial diet. Five waveforms (O1–O5) were evident when O. orientalis fed on bean, whereas only four waveforms (O1–O4) and three waveforms (O1–O3) were observed when the leafhopper fed on tobacco and on the artificial diet, respectively. Both the mean duration of each waveform and waveform type differed markedly depending on the food substrate. Waveform O4 was not observed on the artificial diet and occurred relatively rarely on tobacco plants when compared with bean plants. Waveform O5 was only observed with leafhoppers probing on beans. The attributes of the waveforms and comparative analyses with previously published Hemipteran data are presented and discussed, but further characterisation studies will be needed to confirm our suggestions.
Resumo:
Metastatic melanoma, a cancer historically refractory to chemotherapeutic strategies, has a poor prognosis and accounts for the majority of skin cancer related mortality. Although the recent approval of two new drugs combating this disease, Ipilimumab and Vemurafenib (PLX4032), has demonstrated for the first time in decades an improvement in overall survival; the clinical efficacy of these drugs has been marred by severe adverse immune reactions and acquired drug resistance in patients, respectively. Thus, understanding the etiology of metastatic melanoma will contribute to the improvement of current therapeutic strategies while leading to the development of novel drug approaches. In order to identify recurrently mutated genes of therapeutic relevance in metastatic melanoma, a panel of stage III local lymph node melanomas were extensively characterised using high-throughput genomic technologies. This led to the identification of mutations in TFG in 5% of melanomas from a candidate gene sequencing approach using SNP array analysis, 24% of melanomas with mutations in MAP3K5 or MAP3K9 though unbiased whole-exome sequencing strategies, and inactivating mutations in NF1 in BRAF/NRAS wild type tumours though pathway analysis. Lastly, this thesis describes the development of a melanoma specific mutation panel that can rapidly identify clinically relevant mutation profiles that could guide effective treatment strategies through a personalised therapeutic approach. These findings are discussed in respect to a number of important issues raised by this study including the current limitation of next-generation sequencing technology, the difficulty in identifying ‘driver’ mutations critical to the development of melanoma due to high carcinogenic exposure by UV radiation, and the ultimate application of mutation screening in a personalised therapeutic setting. In summary, a number novel genes involved in metastatic melanoma have been identified that may have relevance for current therapeutic strategies in treating this disease.
Resumo:
Expert knowledge is used widely in the science and practice of conservation because of the complexity of problems, relative lack of data, and the imminent nature of many conservation decisions. Expert knowledge is substantive information on a particular topic that is not widely known by others. An expert is someone who holds this knowledge and who is often deferred to in its interpretation. We refer to predictions by experts of what may happen in a particular context as expert judgments. In general, an expert-elicitation approach consists of five steps: deciding how information will be used, determining what to elicit, designing the elicitation process, performing the elicitation, and translating the elicited information into quantitative statements that can be used in a model or directly to make decisions. This last step is known as encoding. Some of the considerations in eliciting expert knowledge include determining how to work with multiple experts and how to combine multiple judgments, minimizing bias in the elicited information, and verifying the accuracy of expert information. We highlight structured elicitation techniques that, if adopted, will improve the accuracy and information content of expert judgment and ensure uncertainty is captured accurately. We suggest four aspects of an expert elicitation exercise be examined to determine its comprehensiveness and effectiveness: study design and context, elicitation design, elicitation method, and elicitation output. Just as the reliability of empirical data depends on the rigor with which it was acquired so too does that of expert knowledge.
Resumo:
Particulate matter (PM) emissions involve a complex mixture of solid and liquid particles suspended in a gas, where it is noted that PM emissions from diesel engines are a major contributor to the ambient air pollution problem. Whilst epidemiological studies have shown a link between increased ambient PM emissions and respiratory morbidity and mortality, studies of this design are not able to identify the PM constituents responsible for driving adverse respiratory health effects. This review explores in detail the physico-chemical properties of diesel particulate matter (DPM), and identifies the constituents of this pollution source that are responsible for the development of respiratory disease. In particular, this review shows that the DPM surface area and adsorbed organic compounds play a significant role in manifesting chemical and cellular processes that if sustained can lead to the development of adverse respiratory health effects. The mechanisms of injury involved included: inflammation, innate and acquired immunity, and oxidative stress. Understanding the mechanisms of lung injury from DPM will enhance efforts to protect at-risk individuals from the harmful respiratory effects of air pollutants.