228 resultados para Absolute generality
Resumo:
Proton-bound dimers consisting of two glycerophospholipids with different headgroups were prepared using negative ion electrospray ionization and dissociated in a triple quadrupole mass spectrometer. Analysis of the tandem mass spectra of the dimers using the kinetic method provides, for the first time, an order of acidity for the phospholipid classes in the gas phase of PE < PA << PG < PS < PI. Hybrid density functional calculations on model phospholipids were used to predict the absolute deprotonation enthalpies of the phospholipid classes from isodesmic proton transfer reactions with phosphoric acid. The computational data largely support the experimental acidity trend, with the exception of the relative acidity ranking of the two most acidic phospholipid species. Possible causes of the discrepancy between experiment and theory are discussed and the experimental trend is recommended. The sequence of gas phase acidities for the phospholipid headgroups is found to (1) have little correlation with the relative ionization efficiencies of the phospholipid classes observed in the negative ion electrospray process, and (2) correlate well with fragmentation trends observed upon collisional activation of phospholipid \[M - H](-) anions. (c) 2005 American Society for Mass Spectrometry.
Resumo:
Stereotactic radiosurgery treatments involve the delivery of very high doses for a small number of fractions. To date, there is limited data in terms of the skin dose for the very small field sizes used in these treatments. In this work, we determine relative surface doses for small size circular collimators as used in stereotactic radiosurgery treatments. Monte Carlo calculations were performed using the BEAMnrc code with a model of the Novalis 15 Trilogy linear accelerator and the BrainLab circular collimators. The surface doses were calculated at the ICRU skin dose depth of 70 m all using the 6 MV SRS x-ray beam. The calculated surface doses varied between 15 – 12% with decreasing values as the field size increased from 4 to 30 mm. In comparison, surface doses were measured using Gafchromic EBT3 film positioned at the surface of a Virtual Water phantom. The absolute agreement between calculated and measured surface doses was better than 2.5% which is well within the 20 uncertainties of the Monte Carlo calculations and the film measurements. Based on these results, we have shown that the Gafchromic EBT3 film is suitable for surface dose estimates in very small size fields as used in SRS.
Resumo:
Many large-scale GNSS CORS networks have been deployed around the world to support various commercial and scientific applications. To make use of these networks for real-time kinematic positioning services, one of the major challenges is the ambiguity resolution (AR) over long inter-station baselines in the presence of considerable atmosphere biases. Usually, the widelane ambiguities are fixed first, followed by the procedure of determination of the narrowlane ambiguity integers based on the ionosphere-free model in which the widelane integers are introduced as known quantities. This paper seeks to improve the AR performance over long baseline through efficient procedures for improved float solutions and ambiguity fixing. The contribution is threefold: (1) instead of using the ionosphere-free measurements, the absolute and/or relative ionospheric constraints are introduced in the ionosphere-constrained model to enhance the model strength, thus resulting in the better float solutions; (2) the realistic widelane ambiguity precision is estimated by capturing the multipath effects due to the observation complexity, leading to improvement of reliability of widelane AR; (3) for the narrowlane AR, the partial AR for a subset of ambiguities selected according to the successively increased elevation is applied. For fixing the scalar ambiguity, an error probability controllable rounding method is proposed. The established ionosphere-constrained model can be efficiently solved based on the sequential Kalman filter. It can be either reduced to some special models simply by adjusting the variances of ionospheric constraints, or extended with more parameters and constraints. The presented methodology is tested over seven baselines of around 100 km from USA CORS network. The results show that the new widelane AR scheme can obtain the 99.4 % successful fixing rate with 0.6 % failure rate; while the new rounding method of narrowlane AR can obtain the fix rate of 89 % with failure rate of 0.8 %. In summary, the AR reliability can be efficiently improved with rigorous controllable probability of incorrectly fixed ambiguities.
Resumo:
Used frequently in food contact materials, bisphenol A (BPA) has been studied extensively in recent years, and ubiquitous exposure in the general population has been demonstrated worldwide. Characterising within- and between-individual variability of BPA concentrations is important for characterising exposure in biomonitoring studies, and this has been investigated previously in adults, but not in children. The aim of this study was to characterise the short-term variability of BPA in spot urine samples in young children. Children aged ≥2-<4 years (n = 25) were recruited from an existing cohort in Queensland Australia, and donated four spot urine samples each over a two day period. Samples were analysed for total BPA using isotope dilution online solid phase extraction-liquid chromatography-tandem mass spectrometry, and concentrations ranged from 0.53–74.5 ng/ml, with geometric mean and standard deviation of 2.70 ng/ml and 2.94 ng/ml, respectively. Sex and time of sample collection were not significant predictors of BPA concentration. The between-individual variability was approximately equal to the within-individual variability (ICC = 0.51), and this ICC is somewhat higher than previously reported literature values. This may be the result of physiological or behavioural differences between children and adults or of the relatively short exposure window assessed. Using a bootstrapping methodology, a single sample resulted in correct tertile classification approximately 70% of the time. This study suggests that single spot samples obtained from young children provide a reliable characterization of absolute and relative exposure over the short time window studied, but this may not hold true over longer timeframes.
Resumo:
The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling.
Resumo:
Molecular orbital calculations have predicted the stability of a range of connectivities for the radical C5H potential surface. The most energetically favorable of these include the linear C4CH geometry and two ring-chain structures HC2C3 and C2C3H The corresponding anions are also shown to be theoretically stable, and furthermore, a fourth isomer, C2CHC2, is predicted to be the most stable anion connectivity. These results have motivated experimental efforts. Methodologies for the generation of the non-ring-containing isomeric anions C4CH and C2CHC2 have been developed utilizing negative ion mass spectrometry. The absolute connectivities of the anions have been established using deuterium labeling, charge reversal, and neutralization reionization techniques. The success of the latter experiment confirms theoretical predictions of stability of the corresponding neutral species. This is the first reported observation of the neutral C2CHC2 species that calculations predict to be substantially less stable than the C4CH connectivity but still bound relative to isomerization processes.
Resumo:
Cytochrome P450BM3, from Bacillus megaterium, catalyses the epoxidation of linolenic acid 1 yielding 15,16-epoxyoctadeca-9,12-dienoic acid 2 with complete regio- and moderate enantio-selectivity (60% ee). The absolute configuration of the product is tentatively assigned as 15(R),16(S)-. The Michaelis–Menten parameters kcat and Km for the reaction were determined to be 3126 ± 226 min−1 and 24 ± 6 μM respectively.
Resumo:
Molecular orbital calculations have predicted the stability of a range of connectivities for the radical C5H potential surface. The most energetically favorable of these include the linear C4CH geometry and two ring-chain structures HC2C3 and C2C3H The corresponding anions are also shown to be theoretically stable, and furthermore, a fourth isomer, C2CHC2, is predicted to be the most stable anion connectivity. These results have motivated experimental efforts. Methodologies for the generation of the non-ring-containing isomeric anions C4CH and C2CHC2 have been developed utilizing negative ion mass spectrometry. The absolute connectivities of the anions have been established using deuterium labeling, charge reversal, and neutralization reionization techniques. The success of the latter experiment confirms theoretical predictions of stability of the corresponding neutral species. This is the first reported observation of the neutral C2CHC2 species that calculations predict to be substantially less stable than the C4CH connectivity but still bound relative to isomerization processes.
Resumo:
Lack of physical activity and low levels of physical fitness are thought to be contributing factors to the high prevalence of obesity in African-American girls, To examine this hypothesis, we compared habitual physical activity and physical fitness in 54 African-American girls with obesity and 96 African-American girls without obesity residing in rural South Carolina, Participation in vigorous (greater than or equal to 6 METs) (VPA) or moderate and vigorous physical activity (greater than or equal to 4 METs) (MVPA) was assessed on three consecutive days using the Previous Day Physical Activity Recall, Cardiorespiratory fitness was assessed using the PWC 170 cycle ergometer test, Upper body strength was determined at two sites via isometric cable tensiometer tests, Relative to their counterparts without obesity, girls with obesity reported significantly fewer 30-minute blocks of VPA (0.90 +/- 0.14 vs. 1.3 +/- 0.14) and MVPA (1.2 +/- 0.18 vs. 1.7 +/- 0.16) (p<0.01), Within the entire sample, VPA and MVPA were inversely associated with body mass index (r=-0.17 and r=-0.19) and triceps skinfold thickness (r=-0.19 and r=-0.22) (p<0.05), In the PWC 170 test and isometric strength tests, girls with obesity demonstrated absolute scores that were similar to, or greater than, those of girls without obesity; however, when scores were expressed relative to bodyweight, girls with obesity demonstrated significantly lower values (p<0.05). The results support the hypothesis that lack of physical activity and low physical fitness are important contributing factors in the development and/or maintenance of obesity in African-American girls.
Resumo:
This study uses information based on published ATO material and represents the extent of tax-deductible donations made and claimed by Australian individual taxpayers (i.e. not including corporate entities or trusts) to DGRs, at Item D9 Gifts or Donations, in their income tax returns for the 2011-12 income year. The total amount claimed as tax-deductible donations in 2011-12 was $2.24 billion (compared to $2.21 billion in 2010-11), representing 6.85% of all personal taxpayer deductions. Since 1978-79, the actual total tax-deductible donations claimed by Australian individual taxpayers has outpaced inflation-adjusted total tax-deductible donations, measured against the Consumer Price Index. The average tax-deductible donation claimed in 2011-12 increased to $494.25, but the absolute number and percentage of taxpayers claiming donations dropped (to 4.54 million or 35.62%). Analysis is given of individual taxpayers' donation claiming by Gender, State of Residence, Postcode, Income Band, Industry of employment, and Occupation.
Resumo:
Background: An arteriovenous loop (AVL) enclosed in a polycarbonate chamber in vivo, produces a fibrin exudate which acts as a provisional matrix for the development of a tissue engineered microcirculatory network. Objectives: By administering enoxaparin sodium - an inhibitor of fibrin polymerization, the significance of fibrin scaffold formation on AVL construct size (including the AVL, fibrin scaffold, and new tissue growth into the fibrin), growth, and vascularization were assessed and compared to controls. Methods: In Sprague Dawley rats, an AVL was created on femoral vessels and inserted into a polycarbonate chamber in the groin in 3 control groups (Series I) and 3 experimental groups (Series II). Two hours before surgery and 6 hours post-surgery, saline (Series I) or enoxaparin sodium (0.6 mg/kg, Series II) was administered intra-peritoneally. Thereafter, the rats were injected daily with saline (Series I) or enoxaparin sodium (1.5 mg/kg, Series II) until construct retrieval at 3, 10, or 21 days. The retrieved constructs underwent weight and volume measurements, and morphologic/morphometric analysis of new tissue components. Results: Enoxaparin sodium treatment resulted in the development of smaller AVL constructs at 3, 10, and 21 days. Construct weight and volume were significantly reduced at 10 days (control weight 0.337 ± 0.016 g [Mean ± SEM] vs treated 0.228 ± 0.048, [P < .001]: control volume 0.317 ± 0.015 mL vs treated 0.184 ± 0.039 mL [P < .01]) and 21 days (control weight 0.306 ± 0.053 g vs treated 0.198 ± 0.043 g [P < .01]: control volume 0.285 ± 0.047 mL vs treated 0.148 ± 0.041 mL, [P < .01]). Angiogenesis was delayed in the enoxaparin sodium-treated constructs with the absolute vascular volume significantly decreased at 10 days (control vascular volume 0.029 ± 0.03 mL vs treated 0.012 ± 0.002 mL [P < .05]). Conclusion: In this in vivo tissue engineering model, endogenous, extra-vascularly deposited fibrin volume determines construct size and vascular growth in the first 3 weeks and is, therefore, critical to full construct development.
Resumo:
It has been proposed that spatial reference frames with which object locations are specified in memory are intrinsic to a to-be-remembered spatial layout (intrinsic reference theory). Although this theory has been supported by accumulating evidence, it has only been collected from paradigms in which the entire spatial layout was simultaneously visible to observers. The present study was designed to examine the generality of the theory by investigating whether the geometric structure of a spatial layout (bilateral symmetry) influences selection of spatial reference frames when object locations are sequentially learned through haptic exploration. In two experiments, participants learned the spatial layout solely by touch and performed judgments of relative direction among objects using their spatial memories. Results indicated that the geometric structure can provide a spatial cue for establishing reference frames as long as it is accentuated by explicit instructions (Experiment 1) or alignment with an egocentric orientation (Experiment 2). These results are entirely consistent with those from previous studies in which spatial information was encoded through simultaneous viewing of all object locations, suggesting that the intrinsic reference theory is not specific to a type of spatial memory acquired by the particular learning method but instead generalizes to spatial memories learned through a variety of encoding conditions. In particular, the present findings suggest that spatial memories that follow the intrinsic reference theory function equivalently regardless of the modality in which spatial information is encoded.
Resumo:
Performance guarantees for online learning algorithms typically take the form of regret bounds, which express that the cumulative loss overhead compared to the best expert in hindsight is small. In the common case of large but structured expert sets we typically wish to keep the regret especially small compared to simple experts, at the cost of modest additional overhead compared to more complex others. We study which such regret trade-offs can be achieved, and how. We analyse regret w.r.t. each individual expert as a multi-objective criterion in the simple but fundamental case of absolute loss. We characterise the achievable and Pareto optimal trade-offs, and the corresponding optimal strategies for each sample size both exactly for each finite horizon and asymptotically.
Resumo:
Quantum cascade laserabsorption spectroscopy was used to measure the absolute concentration of acetylene in situ during the nanoparticle growth in Ar + C2H2 RF plasmas. It is demonstrated that the nanoparticle growth exhibits a periodical behavior, with the growth cycle period strongly dependent on the initial acetylene concentration in the chamber. Being 300 s at 7.5% of acetylene in the gas mixture, the growth cycle period decreases with the acetylene concentration increasing; the growth eventually disappears when the acetylene concentration exceeds 32%. During the nanoparticle growth, the acetylene concentration is small and does not exceed 4.2% at radio frequency (RF) power of 4 W, and 0.5% at RF power of 20 W. An injection of a single acetylene pulse into the discharge also results in the nanoparticlenucleation and growth. The absorption spectroscopy technique was found to be very effective for the time-resolved measurement of the hydrocarbon content in nanoparticle-generatingplasmas.
Resumo:
An in situ X-ray diffraction investigation of goethite-seeded Al(OH)3 precipitation from synthetic Bayer liquor at 343 K has been performed. The presence of iron oxides and oxyhydroxides in the Bayer process has implications for alumina reversion, which causes significant process losses through unwanted gibbsite precipitation, and is also relevant for the nucleation and growth of scale on mild steel process equipment. The gibbsite, bayerite and nordstrandite polymorphs of Al(OH)3 precipitated from the liquor; gibbsite appeared to precipitate first, with subsequent formation of bayerite and nordstrandite. A Rietveld-based approach to quantitative phase analysis was implemented for the determination of absolute phase abundances as a function of time, from which kinetic information for the formation of the Al(OH)3 phases was determined.