322 resultados para 660304 Energy systems analysis
Resumo:
In practical terms, conceptual modeling is at the core of systems analysis and design. The plurality of modeling methods available has however been regarded as detrimental, and as a strong indication that a common view or theoretical grounding of modeling is wanting. This theoretical foundation must universally address all potential matters to be represented in a model, which consequently suggested ontology as the point of departure for theory development. The Bunge–Wand–Weber (BWW) ontology has become a widely accepted modeling theory. Its application has simultaneously led to the recognition that, although suitable as a meta-model, the BWW ontology needs to be enhanced regarding its expressiveness in empirical domains. In this paper, a first step in this direction has been made by revisiting BUNGE’s ontology, and by proposing the integration of a “hierarchy of systems” in the BWW ontology for accommodating domain specific conceptualizations.
Resumo:
This paper reports the initial steps of research on planning of rural networks for MV and LV. In this paper, two different cases are studied. In the first case, 100 loads are distributed uniformly on a 100 km transmission line in a distribution network and in the second case, the load structure become closer to the rural situation. In case 2, 21 loads are located in a distribution system so that their distance is increasing, distance between load 1 and 2 is 3 km, between 2 and 3 is 6 km, etc). These two models to some extent represent the distribution system in urban and rural areas, respectively. The objective function for the design of the optimal system consists of three main parts: cost of transformers, and MV and LV conductors. The bus voltage is expressed as a constraint and should be maintained within a standard level, rising or falling by no more than 5%.
Resumo:
This paper analyzes the performance of some of the widely used voltage stability indices, namely, singular value, eigenvalue, and loading margin with different static load models. Well-known ZIP model is used to represent loads having components with different power to voltage sensitivities. Studies are carried out on a 10-bus power system and the New England 39-bus power system models. The effects of variation of load model on the performance of the voltage stability indices are discussed. The choice of voltage stability index in the context of load modelling is also suggested in this paper.
Resumo:
This paper describes the operation of a microgrid that contains a custom power park (CPP). The park may contain an unbalanced and/or nonlinear load and the microgrid may contain many dis-tributed generators (DGs). One of the DGs in the microgrid is used as a compensator to achieve load compensation. A new method is proposed for current reference generation for load compensation, which takes into account the real and reactive power to be supplied by the DG connected to the compensator. The real and reactive power from the DGs and the utility source is tightly regulated assuming that dedicated communication channels are available. Therefore this scheme is most suitable in cases where the loads in CPP and DGs are physically located close to each other. The proposal is validated through extensive simulation studies using EMTDC/PSCAD software package (version 4.2).
Resumo:
In this paper, a new power sharing control method for a microgrid with several distributed generation units is proposed. The presence of both inertial and noninertial sources with different power ratings, maximum power point tracking, and various types of loads pose a great challenge for the power sharing and system stability. The conventional droop control method is modified to achieve the desired power sharing ensuring system stability in a highly resistive network. A transformation matrix is formed to derive equivalent real and reactive power output of the converter and equivalent feedback gain matrix for the modified droop equation. The proposed control strategy, aimed for the prototype microgrid planned at Queensland University of Technology, is validated through extensive simulation results using PSCAD/EMTDC software.