212 resultados para 135-839B
Resumo:
Cheating detection in linear secret sharing is considered. The model of cheating extends the Tompa-Woll attack and includes cheating during multiple (unsuccessful) recovery of the secret. It is shown that shares in most linear schemes can be split into subshares. Subshares can be used by participants to trade perfectness of the scheme with cheating prevention. Evaluation of cheating prevention is given in the context of different strategies applied by cheaters.
Resumo:
A multiscale, multiphase thermokinetic model is used to show the effective control of the growth orientation of thin Si NWs for nanoelectronic devices enabled by nanoscale plasma chemistry. It is shown that very thin Si NWs with [110] growth direction can nucleate at much lower process temperatures and pressures compared to thermal chemical vapor deposition where [111]-directed Si NWs are predominantly grown. These findings explain a host of experimental results and offer the possibility of energy- and matter-efficient, size- and orientation-controlled growth of [110] Si NWs for next-generation nanodevices.
Resumo:
Self-organization and dynamic processes of nano/micron-sized solid particles grown in low-temperature chemically active plasmas as well as the associated physico-chemical processes are reviewed. Three specific reactive plasma chemistries, namely, of silane (SiH4), acetylene (C 2H2), and octafluorocyclobutane (c-C4F 8) RF plasma discharges for plasma enhanced chemical vapor deposition of amorphous hydrogenated silicon, hydrogenated and fluorinated carbon films, are considered. It is shown that the particle growth mechanisms and specific self-organization processes in the complex reactive plasma systems are related to the chemical organization and size of the nanoparticles. Correlation between the nanoparticle origin and self-organization in the ionized gas phase and improved thin film properties is reported. Self-organization and dynamic phenomena in relevant reactive plasma environments are studied for equivalent model systems comprising inert buffer gas and mono-dispersed organic particulate powders. Growth kinetics and dynamic properties of the plasma-assembled nanoparticles can be critical for the process quality in microelectronics as well as a number of other industrial applications including production of fine metal or ceramic powders, nanoparticle-unit thin film deposition, nanostructuring of substrates, nucleating agents in polymer and plastics synthesis, drug delivery systems, inorganic additives for sunscreens and UV-absorbers, and several others. Several unique properties of the chemically active plasma-nanoparticle systems are discussed as well.
Resumo:
Drying is a key processing techniques used in food engineering which demands continual developments on advanced analysis techniques in order to optimize the product and the process. In this regard, plant based materials are a frequent subject of interest where microstructural studies can provide a clearer understanding on the fundamental physical mechanisms involved. In this context, considering numerous challenges of using conventional numerical grid-based modelling techniques, a meshfree particle based model was developed to simulate extreme deformations of plant microstructure during drying. The proposed technique is based on a particle based meshfree method: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). A tissue model was developed by aggrading individual cells modelled with SPH-DEM coupled approach by initializing the cells as hexagons and aggregating them to form a tissue. The model also involves a middle lamella resembling real tissues. Using the model, different dried tissue states were simulated with different moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model is capable of simulating plant tissues at lower moisture contents which results in excessive shrinkage and cell wall wrinkling. Model predictions were compared with experimental findings and a fairly good agreement was observed both qualitatively and quantitatively.
Resumo:
We have studied the mineral chenevixite from Manto Cuba Mine, San Pedro de Cachiyuyo District, Inca de Oro, Chañaral Province, Atacama Region, Chile, using a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDX) and vibrational spectroscopy. Qualitative chemical analysis shows a homogeneous composition, with predominance of As, Fe, Al, Cu, Fe and Cu. Minor amounts of Si were also observed. Raman spectroscopy complimented with infrared spectroscopy has been used to assess the molecular structure of the arsenate minerals chenevixite. Characteristic Raman and infrared bands of the (AsO4)3− stretching and bending vibrations are identified and described. The observation of multiple bands in the (AsO4)3− bending region offers support for the loss of symmetry of the arsenate anion in the structure of chenevixite. Raman bands attributable to the OH stretching vibrations of water and hydroxyl units were analysed. Estimates of the hydrogen bond distances were made based upon the OH stretching wavenumbers.
Resumo:
Austinite (CaZnAsO4⋅OH) is a unique secondary mineral in arsenic-contaminated mine wastes. The infrared and Raman spectroscopies were used to characterize the austenite vibrations. The IR bands at 369, 790 and 416 cm−1 are assigned to the ν2, ν3 and ν4 vibrations of AsO43− unit, respectively. The Raman bands at 814, 779 and 403 cm−1 correspond to the ν1, ν3 and ν4 vibrations of AsO43− unit respectively. The sharp bands at 3265 cm−1 for IR and 3270 cm−1 both reveals that the structural hydroxyl units exist in the austenite structure. The IR and Raman spectra both show that some SO4 units isomorphically replace AsO4 in austinite. X-ray single crystal diffraction provides the arrangement of each atom in the mineral structure, and also confirms that the conclusions made from the vibrational spectra. Micro-powder diffraction was used to confirm our mineral identification due to the small quantity of the austenite crystals.
Resumo:
While formal definitions and security proofs are well established in some fields like cryptography and steganography, they are not as evident in digital watermarking research. A systematic development of watermarking schemes is desirable, but at present their development is usually informal, ad hoc, and omits the complete realization of application scenarios. This practice not only hinders the choice and use of a suitable scheme for a watermarking application, but also leads to debate about the state-of-the-art for different watermarking applications. With a view to the systematic development of watermarking schemes, we present a formal generic model for digital image watermarking. Considering possible inputs, outputs, and component functions, the initial construction of a basic watermarking model is developed further to incorporate the use of keys. On the basis of our proposed model, fundamental watermarking properties are defined and their importance exemplified for different image applications. We also define a set of possible attacks using our model showing different winning scenarios depending on the adversary capabilities. It is envisaged that with a proper consideration of watermarking properties and adversary actions in different image applications, use of the proposed model would allow a unified treatment of all practically meaningful variants of watermarking schemes.
Resumo:
Background: Malaria rapid diagnostic tests (RDTs) are increasingly used by remote health personnel with minimal training in laboratory techniques. RDTs must, therefore, be as simple, safe and reliable as possible. Transfer of blood from the patient to the RDT is critical to safety and accuracy, and poses a significant challenge to many users. Blood transfer devices were evaluated for accuracy and precision of volume transferred, safety and ease of use, to identify the most appropriate devices for use with RDTs in routine clinical care. Methods: Five devices, a loop, straw-pipette, calibrated pipette, glass capillary tube, and a new inverted cup device, were evaluated in Nigeria, the Philippines and Uganda. The 227 participating health workers used each device to transfer blood from a simulated finger-prick site to filter paper. For each transfer, the number of attempts required to collect and deposit blood and any spilling of blood during transfer were recorded. Perceptions of ease of use and safety of each device were recorded for each participant. Blood volume transferred was calculated from the area of blood spots deposited on filter paper. Results: The overall mean volumes transferred by devices differed significantly from the target volume of 5 microliters (p < 0.001). The inverted cup (4.6 microliters) most closely approximated the target volume. The glass capillary was excluded from volume analysis as the estimation method used is not compatible with this device. The calibrated pipette accounted for the largest proportion of blood exposures (23/225, 10%); exposures ranged from 2% to 6% for the other four devices. The inverted cup was considered easiest to use in blood collection (206/ 226, 91%); the straw-pipette and calibrated pipette were rated lowest (143/225 [64%] and 135/225 [60%] respectively). Overall, the inverted cup was the most preferred device (72%, 163/227), followed by the loop (61%, 138/227). Conclusions: The performance of blood transfer devices varied in this evaluation of accuracy, blood safety, ease of use, and user preference. The inverted cup design achieved the highest overall performance, while the loop also performed well. These findings have relevance for any point-of-care diagnostics that require blood sampling.
Resumo:
Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections. Conclusion Asymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay.
Resumo:
WHO estimates that half the world’s population is at risk of malaria. In 2012, there were an estimated 207 million cases (with an uncertainty range of 135 million to 287 million) and an estimated 627 000 deaths (with an uncertainty range of 473 000 to 789 000). Approximately 90% of all malaria deaths occur in sub-Saharan Africa, and 77% occur in children under 5 years. Malaria remains endemic in 104 countries, and, while parasite-based diagnosis is increasing, most suspected cases of malaria are still not properly confirmed, resulting in over-use of antimalarial drugs and poor disease monitoring (1)...
Resumo:
The annual Anzac Day observance is a focus for articulating popular notions of Australian national identity. Early Anzac Day observations were characterised by a diversity of observational modes, many distinctly masculine and militarist in character; including sports, competitions and marches. It was from the late 1920s that the now characteristic structure of the day (dawn service - march -follow-on - afternoon celebrations including eating, drinking and playing of the gambling game two-up, illegal on every other day of the year} became the dominant form. 1 Widely believed to have experienced an extended nadir in the 1960s and 1970s, since the 1980s Anzac Day has arguably become the single most important national event in the Australian calendar, involving probably the largest-numbers of Australians, many of them young, in the same temporal observance in a multitude of locations across the country and around the world.2 To date, there is a rich literature around Anzac Day observations and meanings focussing on its cultural I folkioric role'; the production of (masculinised) national identity;pilgrimage;' popular memory I history;' and the contemporary reshaping of the Anzac myth by and for indigenous participants.'
Resumo:
Optimisation of organic Rankine cycles(ORCs for binary cycle applications could play a major role in determining the competitiveness of low to moderate renewable sources. An important aspect of the optimisation is to maximise the turbine output power for a given resource. This requires careful attention to the turbine design notably through numerical simulations. Challenges in the numerical modelling of radial-inflow turbines using high-density working fluids still need to be addressed in order to improve the turbine design and better optimise ORCs. Thispaper presents preliminary 3D numerical simulations of a high-density radial-inflow ORC turbine in sensible geothermal conditions. Following extensive investigation of the operating conditions and thermodynamic cycle analysis, therefrigerant R143a is chosen as the high-density working fluid. The 1D design of the candidate radial-inflow turbine is presented in details. Furthermore, commercially-available software Ansys-CFX is used to perform preliminary steady-state 3D CFD simulations of the candidate R143a radial-inflow turbine for a number of operating conditions including off-design conditions. The real-gas properties are obtained using the Peng–Robinson equations of state.The thermodynamic ORC cycle is presented. The preliminary design created using dedicated radial-inflow turbine software Concepts-Rital is discussed and the 3D CFD results are presented and compared against the meanline analysis.
Resumo:
Many educators are currently interested in using computer-mediated communications (CMCs) to support learning and creative practice. In my work I have been looking at how we might create drama through using cyberspaces, working with teachers and students in secondary school contexts. In trying to understand issues that have arisen and ways of working with the data I have found a number of frameworks helpful for analysing the online interactions. These frameworks draw from O'Toole's work on contexts negotiated in the creation of drama and other frameworks drawn from Wertsch, Bakhtin and Vygotsky's work on speech utterances, dialogic processes and internalisation of learning. The contexts and factors which must be negotiated in online communications within learning contexts are quite complex and educators may need to provide parameters and protocols to ensure appropriate languages, genres and utterances are utilised. The paper explores some of the types of languages, genres and utterances that emerged from a co-curricula drama project and issues that arose, including the importance of establishing processes for giving and receiving critical feedback This paper is of relevance to those whose research strategies may involve the use of computer-mediated communications as well as those utilising cyberspaces in educational contexts.
Resumo:
Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure assessment in epidemiological studies. Most LUR models are developed for single cities, which places limitations on their applicability to other locations. We sought to develop a model to predict nitrogen dioxide (NO2) concentrations with national coverage of Australia by using satellite observations of tropospheric NO2 columns combined with other predictor variables. We used a generalised estimating equation (GEE) model to predict annual and monthly average ambient NO2 concentrations measured by a national monitoring network from 2006 through 2011. The best annual model explained 81% of spatial variation in NO2 (absolute RMS error=1.4 ppb), while the best monthly model explained 76% (absolute RMS error=1.9 ppb). We applied our models to predict NO2 concentrations at the ~350,000 census mesh blocks across the country (a mesh block is the smallest spatial unit in the Australian census). National population-weighted average concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We found that a simple approach using tropospheric NO2 column data yielded models with slightly better predictive ability than those produced using a more involved approach that required simulation of surface-to-column ratios. The models were capable of capturing within-urban variability in NO2, and offer the ability to estimate ambient NO2 concentrations at monthly and annual time scales across Australia from 2006–2011. We are making our model predictions freely available for research.