220 resultados para 108-657A
Resumo:
RNA silencing has become a major focus of molecular biology and biomedical research around the world. This is highlighted by a simple PubMed search for “RNA silencing,” which retrieves almost 9,000 articles. Interest in gene silencing-related mechanisms stemmed from the early 1990s, when this phenomenon was first noted as a surprise observation by plant scientists during the course of plant transformation experiments, in which the introduction of a transgene into the genome led to the silencing of both the transgene and homologous endogenes. From these initial studies, plant biologists have continued to generate a wealth of information into not only gene silencing mechanisms but also the complexity of these biological pathways as well as revealing their multilevel interactions with one another. The plant biology community has also made significant advancements in exploiting RNA silencing as a powerful tool for gene function studies and crop improvements. In this article, we (1) review the rich history of gene silencing research and the knowledge it has generated into our understanding of this fundamental mechanism of gene regulation in plants; (2) describe examples of the current applications of RNA silencing in crop plants; and (3) discuss improvements in RNA silencing technology and its potential application in plant science.
Resumo:
Students making the transition from high school to university often encounter many stressors and new experiences. Many students adjust successfully to university; however, some students do not, often resulting in attrition from the university and mental health issues. The primary aim of the current study was to examine the effects that optimism, self-efficacy, depression, and anxiety have on an individual's life stress and adaptation to university. Eighty-four first-year, full-time students from the Queensland University of Technology (60 female, 24 male) who had entered university straight from high school completed the study. Participants completed a questionnaire assessing their levels of optimism, self-efficacy, depression, anxiety, perceived level of life stress and adaptation to university. In line with predictions, results showed that optimism, depression, and anxiety each had a significant relationship with students’ perceived level of stress. Furthermore, self-efficacy and depression had a significant relationship with adaptation to university. We conclude that students with high levels of optimism and low levels of depression and anxiety will adapt better when making the transition from high school to university. In addition, students with high levels of self-efficacy and low levels of depression will experience less life stress in their commencement year of university. The implications of this study are outlined.
Resumo:
Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald’s formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross–Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.
Resumo:
A cell classification algorithm that uses first, second and third order statistics of pixel intensity distributions over pre-defined regions is implemented and evaluated. A cell image is segmented into 6 regions extending from a boundary layer to an inner circle. First, second and third order statistical features are extracted from histograms of pixel intensities in these regions. Third order statistical features used are one-dimensional bispectral invariants. 108 features were considered as candidates for Adaboost based fusion. The best 10 stage fused classifier was selected for each class and a decision tree constructed for the 6-class problem. The classifier is robust, accurate and fast by design.
Resumo:
Review(s) of: An opening: Twelve love stories about art, by Stephanie Radok 2012, Wakefield Press, Adelaide, xiv, 168 p., ISBN 9781743050415 (pbk).
Resumo:
The Brain Research Institute (BRI) uses various types of indirect measurements, including EEG and fMRI, to understand and assess brain activity and function. As well as the recovery of generic information about brain function, research also focuses on the utilisation of such data and understanding to study the initiation, dynamics, spread and suppression of epileptic seizures. To assist with the future focussing of this aspect of their research, the BRI asked the MISG 2010 participants to examine how the available EEG and fMRI data and current knowledge about epilepsy should be analysed and interpreted to yield an enhanced understanding about brain activity occurring before, at commencement of, during, and after a seizure. Though the deliberations of the study group were wide ranging in terms of the related matters considered and discussed, considerable progress was made with the following three aspects. (1) The science behind brain activity investigations depends crucially on the quality of the analysis and interpretation of, as well as the recovery of information from, EEG and fMRI measurements. A number of specific methodologies were discussed and formalised, including independent component analysis, principal component analysis, profile monitoring and change point analysis (hidden Markov modelling, time series analysis, discontinuity identification). (2) Even though EEG measurements accurately and very sensitively record the onset of an epileptic event or seizure, they are, from the perspective of understanding the internal initiation and localisation, of limited utility. They only record neuronal activity in the cortical (surface layer) neurons of the brain, which is a direct reflection of the type of electrical activity they have been designed to record. Because fMRI records, through the monitoring of blood flow activity, the location of localised brain activity within the brain, the possibility of combining fMRI measurements with EEG, as a joint inversion activity, was discussed and examined in detail. (3) A major goal for the BRI is to improve understanding about ``when'' (at what time) an epileptic seizure actually commenced before it is identified on an eeg recording, ``where'' the source of this initiation is located in the brain, and ``what'' is the initiator. Because of the general agreement in the literature that, in one way or another, epileptic events and seizures represent abnormal synchronisations of localised and/or global brain activity the modelling of synchronisations was examined in some detail. References C. M. Michel, G. Thut, S. Morand, A. Khateb, A. J. Pegna, R. Grave de Peralta, S. Gonzalez, M. Seeck and T. Landis, Electric source imaging of human brain functions, Brain Res. Rev. , 36 (2--3), 2001, 108--118. doi:10.1016/S0165-0173(01)00086-8 S. Ogawa, R. S. Menon, S. G. Kim and K. Ugurbil, On the characteristics of functional magnetic resonance imaging of the brain, Annu. Rev. Bioph. Biom. , 27 , 1998, 447--474. doi:10.1146/annurev.biophys.27.1.447 C. D. Binnie and H. Stefan, Modern electroencephalography: its role in epilepsy management, Clin. Neurophysiol. , 110 (10), 1999, 1671--1697. doi:10.1016/S1388-2457(99)00125-X J. X. Tao, A. Ray, S. Hawes-Ebersole and J. S. Ebersole, Intracranial eeg substrates of scalp eeg interictal spikes, Epilepsia , 46 (5), 2005, 669--76. doi:10.1111/j.1528-1167.2005.11404.x S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle and K. Ugurbil, Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging, P. Natl. Acad. Sci. USA , 89 (13), 1992, 5951--5955. doi:10.1073/pnas.89.13.5951 J. Engel Jr., Report of the ilae classification core group, Epilepsia , 47 (9), 2006, 1558--1568. doi:10.1111/j.1528-1167.2006.00215.x L. Lemieux, A. Salek-Haddadi, O. Josephs, P. Allen, N. Toms, C. Scott, K. Krakow, R. Turner and D. R. Fish, Event-related fmri with simultaneous and continuous eeg: description of the method and initial case r port, NeuroImage , 14 (3), 2001, 780--7. doi:10.1006/nimg.2001.0853 P. Federico, D. F. Abbott, R. S. Briellmann, A. S. Harvey and G. D. Jackson, Functional mri of the pre-ictal state, Brain , 128 (8), 2005, 1811-7. doi:10.1093/brain/awh533 C. S. Hawco, A. P. Bagshaw, Y. Lu, F. Dubeau and J. Gotman, bold changes occur prior to epileptic spikes seen on scalp eeg, NeuroImage , 35 (4), 2007, 1450--1458. doi:10.1016/j.neuroimage.2006.12.042 F. Moeller, H. R. Siebner, S. Wolff, H. Muhle, R. Boor, O. Granert, O. Jansen, U. Stephani and M. Siniatchkin, Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges, NeuroImage , 39 (4), 2008, 1839--1849. doi:10.1016/j.neuroimage.2007.10.058 V. Osharina, E. Ponchel, A. Aarabi, R. Grebe and F. Wallois, Local haemodynamic changes preceding interictal spikes: A simultaneous electrocorticography (ecog) and near-infrared spectroscopy (nirs) analysis in rats, NeuroImage , 50 (2), 2010, 600--607. doi:10.1016/j.neuroimage.2010.01.009 R. S. Fisher, W. Boas, W. Blume, C. Elger, P. Genton, P. Lee and J. Engel, Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ilae) and the international bureau for epilepsy (ibe), Epilepsia , 46 (4), 2005, 470--472. doi:10.1111/j.0013-9580.2005.66104.x H. Berger, Electroencephalogram in humans, Arch. Psychiat. Nerven. , 87 , 1929, 527--570. C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli and R. G. de Peralta, eeg source imaging, Clin. Neurophysiol. , 115 (10), 2004, 2195--2222. doi:10.1016/j.clinph.2004.06.001 P. L. Nunez and R. B. Silberstein, On the relationship of synaptic activity to macroscopic measurements: Does co-registration of eeg with fmri make sense?, Brain Topogr. , 13 (2), 2000, 79--96. doi:10.1023/A:1026683200895 S. Ogawa, T. M. Lee, A. R. Kay and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, P. Natl. Acad. Sci. USA , 87 (24), 1990, 9868--9872. doi:10.1073/pnas.87.24.9868 J. S. Gati, R. S. Menon, K. Ugurbil and B. K. Rutt, Experimental determination of the bold field strength dependence in vessels and tissue, Magn. Reson. Med. , 38 (2), 1997, 296--302. doi:10.1002/mrm.1910380220 P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky and J. S. Hyde, Time course EPI of human brain function during task activation, Magn. Reson. Med. , 25 (2), 1992, 390--397. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppelm, M. S. Cohen and R. Turner, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, P. Natl. Acad. Sci. USA , 89 (12), 1992, 5675--5679. doi:10.1073/pnas.89.12.5675 J. Frahm, K. D. Merboldt and W. Hnicke, Functional mri of human brain activation at high spatial resolution, Magn. Reson. Med. , 29 (1), 1993, 139--144. P. A. Bandettini, A. Jesmanowicz, E. C. Wong and J. S. Hyde, Processing strategies for time-course data sets in functional MRI of the human brain, Magn. Reson. Med. , 30 (2), 1993, 161--173. K. J. Friston, P. Jezzard and R. Turner, Analysis of functional MRI time-series, Hum. Brain Mapp. , 1 (2), 1994, 153--171. B. Biswal, F. Z. Yetkin, V. M. Haughton and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar mri, Mag. Reson. Med. , 34 (4), 1995, 537--541. doi:10.1002/mrm.1910340409 K. J. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather and R. S. J. Frackowiak, Spatial registration and normalization of images, Hum. Brain Mapp. , 3 (3), 1995, 165--189. K. J. Friston, S. Williams, R. Howard, R. S. Frackowiak and R. Turner, Movement-related effects in fmri time-series, Magn. Reson. Med. , 35 (3), 1996, 346--355. G. H. Glover, T. Q. Li and D. Ress, Image-based method for retrospective correction of physiological motion effects in fmri: Retroicor, Magn. Reson. Med. , 44 (1), 2000, 162--167. doi:10.1002/1522-2594(200007)44:13.0.CO;2-E K. J. Friston, O. Josephs, G. Rees and R. Turner, Nonlinear event-related responses in fmri, Magn. Reson. Med. , 39 (1), 1998, 41--52. doi:10.1002/mrm.1910390109 K. Ugurbil, L. Toth and D. Kim, How accurate is magnetic resonance imaging of brain function?, Trends Neurosci. , 26 (2), 2003, 108--114. doi:10.1016/S0166-2236(02)00039-5 D. S. Kim, I. Ronen, C. Olman, S. G. Kim, K. Ugurbil and L. J. Toth, Spatial relationship between neuronal activity and bold functional mri, NeuroImage , 21 (3), 2004, 876--885. doi:10.1016/j.neuroimage.2003.10.018 A. Connelly, G. D. Jackson, R. S. Frackowiak, J. W. Belliveau, F. Vargha-Khadem and D. G. Gadian, Functional mapping of activated human primary cortex with a clinical mr imaging system, Radiology , 188 (1), 1993, 125--130. L. Allison, Hidden Markov Models, Technical Report , School of Computer and Software Engineering, Monash University, 2000. R. J. Elliott, L. Aggoun and J.B. Moore, Hidden Markov Models: Estimation and Control, Appl. Math.-Czech. , 2004. B. Bhavnagri, Discontinuities of plane functions projected from a surface with methods for finding these , Technical Report, 2009. B. Bhavnagri, Computer Vision using Shape Spaces , Technical Report,1996, University of Adelaide. B. Bhavnagri, A method for representing shape based on an equivalence relation on polygons, Pattern Recogn. , 27 (2), 1994, 247--260. doi:10.1016/0031-3203(94)90057-4 D. F. Abbott, A. B. Waites, A. S. Harvey and G. D. Jackson, Exploring epileptic seizure onset with fmri, NeuroImage , 36(S1) (344TH-PM), 2007. M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science , 197 , 1977, 287--289. S. H. Strogatz, SYNC - The Emerging Science of Spontaneous Order , Theia, New York, 2003. J. W. Kim, J. A. Roberts and P. A. Robinson, Dynamics of epileptic seizures: Evolution, spreading, and suppression, J. Theor. Biol. , 257 (4), 2009, 527--532. doi:10.1016/j.jtbi.2008.12.009 Y. Kuramoto, T. Aoyagi, I. Nishikawa, T. Chawanya T and K. Okuda, Neural network model carrying phase information with application to collective dynamics, J. Theor. Phys. , 87 (5), 1992, 1119--1126. V. B. Mountcastle, The columnar organization of the neocortex, Brain , 120 (4), 1997, 701. doi:10.1093/brain/120.4.701 F. L. Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity, Epilepsia , 44 (12), 2003, 72--83. F. H. Lopes da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Dynamical diseases of brain systems: different routes to epileptic seizures, ieee T. Bio-Med. Eng. , 50 (5), 2003, 540. L.D. Iasemidis, Epileptic seizure prediction and control, ieee T. Bio-Med. Eng. , 50 (5), 2003, 549--558. L. D. Iasemidis, D. S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. C. Principe, P. R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis, Adaptive epileptic seizure prediction system, ieee T. Bio-Med. Eng. , 50 (5), 2003, 616--627. K. Lehnertz, F. Mormann, T. Kreuz, R.G. Andrzejak, C. Rieke, P. David and C. E. Elger, Seizure prediction by nonlinear eeg analysis, ieee Eng. Med. Biol. , 22 (1), 2003, 57--63. doi:10.1109/MEMB.2003.1191451 K. Lehnertz, R. G. Andrzejak, J. Arnhold, T. Kreuz, F. Mormann, C. Rieke, G. Widman and C. E. Elger, Nonlinear eeg analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and prevention, J. Clin. Neurophysiol. , 18 (3), 2001, 209. B. Litt and K. Lehnertz, Seizure prediction and the preseizure period, Curr. Opin. Neurol. , 15 (2), 2002, 173. doi:10.1097/00019052-200204000-00008 B. Litt and J. Echauz, Prediction of epileptic seizures, Lancet Neurol. , 1 (1), 2002, 22--30. doi:10.1016/S1474-4422(02)00003-0 M. M{a}kiranta, J. Ruohonen, K Suominen, J. Niinim{a}ki, E. Sonkaj{a}rvi, V. Kiviniemi, T. Sepp{a}nen, S. Alahuhta, V. J{a}ntti and O. Tervonen, {bold} signal increase preceeds eeg spike activity--a dynamic penicillin induced focal epilepsy in deep anesthesia, NeuroImage , 27 (4), 2005, 715--724. doi:10.1016/j.neuroimage.2005.05.025 K. Lehnertz, F. Mormann, H. Osterhage, A. M{u}ller, J. Prusseit, A. Chernihovskyi, M. Staniek, D. Krug, S. Bialonski and C. E. Elger, State-of-the-art of seizure prediction, J. Clin. Neurophysiol. , 24 (2), 2007, 147. doi:10.1097/WNP.0b013e3180336f16 F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E. Elger and K. Lehnertz, On the predictability of epileptic seizures, Clin. Neurophysiol. , 116 (3), 2005, 569--587. doi:10.1016/j.clinph.2004.08.025 F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road, Brain , 130 (2), 2007, 314--333. doi:10.1093/brain/awl241 Z. Rogowski, I. Gath and E. Bental, On the prediction of epileptic seizures, Biol. Cybern. , 42 (1), 1981, 9--15. Y. Salant, I. Gath, O. Henriksen, Prediction of epileptic seizures from two-channel eeg, Med. Biol. Eng. Comput. , 36 (5), 1998, 549--556. doi:10.1007/BF02524422 J. Gotman and D.J. Koffler, Interictal spiking increases after seizures but does not after decrease in medication, Evoked Potential , 72 (1), 1989, 7--15. J. Gotman and M. G. Marciani, Electroencephalographic spiking activity, drug levels, and seizure occurence in epileptic patients, Ann. Neurol. , 17 (6), 1985, 59--603. A. Katz, D. A. Marks, G. McCarthy and S. S. Spencer, Does interictal spiking change prior to seizures?, Electroen. Clin. Neuro. , 79 (2), 1991, 153--156. A. Granada, R. M. Hennig, B. Ronacher, A. Kramer and H. Herzel, Phase Response Curves: Elucidating the dynamics of couples oscillators, Method Enzymol. , 454 (A), 2009, 1--27. doi:10.1016/S0076-6879(08)03801-9 doi:10.1016/S0076-6879(08)03801-9 H. Kantz and T. Schreiber, Nonlinear time series analysis , 2004, Cambridge Univ Press. M. V. L. Bennett and R. S Zukin, Electrical coupling and neuronal synchronization in the mammalian brain, Neuron , 41 (4), 2004, 495 --511. doi:10.1016/S0896-6273(04)00043-1 L.D. Iasemidis, J. Chris Sackellares, H. P. Zaveri and W. J. Williams, Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures, Brain Topogr. , 2 (3), 1990, 187--201. doi:10.1007/BF01140588 M. Le Van Quyen, J. Martinerie, V. Navarro, M. Baulac and F. J. Varela, Characterizing neurodynamic changes before seizures, J. Clin. Neurophysiol. , 18 (3), 2001, 191. J. Martinerie, C. Adam, M. Le Van Quyen, M. Baulac, S. Clemenceau, B. Renault and F. J. Varela, Epileptic seizures can be anticipated by non-linear analysis, Nat. Med. , 4 (10), 1998, 1173--1176. doi:10.1038/2667 A. Pikovsky, M. Rosenblum, J. Kurths and R. C. Hilborn, Synchronization: A universal concept in nonlinear science, Amer. J. Phys. , 70 , 2002, 655. H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. , 12 (1), 1972, 1--24. D. Cumin and C. P. Unsworth, Generalising the Kuramoto model for the study of neuronal synchronisation in the brain, Physica D , 226 (2), 2007, 181--196. doi:10.1016/j.physd.2006.12.004 F. K. Skinner, H. Bazzazi and S. A. Campbell, Two-cell to N-cell heterogeneous, inhibitory networks: Precise linking of multistable and coherent properties, J. Comput. Neurosci. , 18 (3), 2005, 343--352. doi:10.1007/s10827-005-0331-1 W. W. Lytton, Computer modelling of epilepsy, Nat. Rev. Neurosci. , 9 (8), 2008, 626--637. doi:10.1038/nrn2416 R. D. Traub, A. Bibbig, F. E. N. LeBeau, E. H. Buhl and M. A. Whittington, Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro, Ann. Rev. , 2004. R. D. Traub, A. Draguhn, M. A. Whittington, T. Baldeweg, A. Bibbig, E. H. Buhl and D. Schmitz, Axonal gap junc ions between principal neurons: A novel source of network oscillations, and perhaps epileptogenesis., Rev. Neuroscience , 13 (1), 2002, 1. doi:10.1146/annurev.neuro.27.070203.144303 M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk and G. Sugihara, Early-warning signals for critical transitions, Nature , 461 (7260), 2009, 53--59. doi:10.1038/nature08227 K. Murphy, A Brief Introduction to Graphical Models and Bayesian Networks , 2008, http://www.cs.ubc.ca/murphyk/Bayes/bnintro.html . R. C. Bradley, An elementary
Resumo:
Dragon stream cipher is one of the focus ciphers which have reached Phase 2 of the eSTREAMproject. In this paper, we present a new method of building a linear distinguisher for Dragon. The distinguisher is constructed by exploiting the biases of two S-boxes and the modular addition which are basic components of the nonlinear function F. The bias of the distinguisher is estimated to be around 2−75.32 which is better than the bias of the distinguisher presented by Englund and Maximov. We have shown that Dragon is distinguishable from a random cipher by using around 2150.6 keystream words and 259 memory. In addition, we present a very efficient algorithm for computing the bias of linear approximation of modular addition.
Resumo:
Background: Display technologies which allow peptides or proteins to be physically associated with the encoding DNA are central to procedures which involve screening of protein libraries in vitro for new or altered function. Here we describe a new system designed specifically for the display of libraries of diverse, functional proteins which utilises the DNA binding protein nuclear factor κB (NF-κB) p50 to establish a phenotype–genotype link between the displayed protein and the encoding gene. Results: A range of model fusion proteins to either the amino- or carboxy-terminus of NF-κB p50 have been constructed and shown to retain the picomolar affinity and DNA specificity of wild-type NF-κB p50. Through use of an optimal combination of binding buffer and DNA target sequence, the half-life of p50–DNA complexes could be increased to over 47 h, enabling the competitive selection of a variety of protein–plasmid complexes with enrichment factors of up to 6000-fold per round. The p50-based plasmid display system was used to enrich a maltose binding protein complex to homogeneity in only three rounds from a binary mixture with a starting ratio of 1:108 and to enrich to near homogeneity a single functional protein from a phenotype–genotype linked Escherichia coli genomic library using in vitro functional selections. Conclusions: A new display technology is described which addresses the challenge of functional protein display. The results demonstrate that plasmid display is sufficiently sensitive to select a functional protein from large libraries and that it therefore represents a useful addition to the repertoire of display technologies.
Resumo:
Background Display technologies which allow peptides or proteins to be physically associated with the encoding DNA are central to procedures which involve screening of protein libraries in vitro for new or altered function. Here we describe a new system designed specifically for the display of libraries of diverse, functional proteins which utilises the DNA binding protein nuclear factor κB (NF-κB) p50 to establish a phenotype-genotype link between the displayed protein and the encoding gene. Results A range of model fusion proteins to either the amino- or carboxy-terminus of NF-κB p50 have been constructed and shown to retain the picomolar affinity and DNA specificity of wild-type NF-κB p50. Through use of an optimal combination of binding buffer and DNA target sequence, the half-life of p50-DNA complexes could be increased to over 47 h, enabling the competitive selection of a variety of protein-plasmid complexes with enrichment factors of up to 6000-fold per round. The p50-based plasmid display system was used to enrich a maltose binding protein complex to homogeneity in only three rounds from a binary mixture with a starting ratio of 1:108 and to enrich to near homogeneity a single functional protein from a phenotype-genotype linked Escherichia coli genomic library using in vitro functional selections. Conclusions A new display technology is described which addresses the challenge of functional protein display. The results demonstrate that plasmid display is sufficiently sensitive to select a functional protein from large libraries and that it therefore represents a useful addition to the repertoire of display technologies.
Resumo:
Mutations in the genes encoding for either the biosynthetic or transcriptional regulation of the anthocyanin pathway have been linked to color phenotypes. Generally, this is a loss of function resulting in a reduction or a change in the distribution of anthocyanin. Here, we describe a rearrangement in the upstream regulatory region of the gene encoding an apple (Malus x domestica) anthocyanin-regulating transcription factor, MYB10. We show that this modification is responsible for increasing the level of anthocyanin throughout the plant to produce a striking phenotype that includes red foliage and red fruit flesh. This rearrangement is a series of multiple repeats, forming a minisatellite-like structure that comprises five direct tandem repeats of a 23-bp sequence. This MYB10 rearrangement is present in all the red foliage apple varieties and species tested but in none of the white fleshed varieties. Transient assays demonstrated that the 23-bp sequence motif is a target of the MYB10 protein itself, and the number of repeat units correlates with an increase in transactivation by MYB10 protein. We show that the repeat motif is capable of binding MYB10 protein in electrophoretic mobility shift assays. Taken together, these results indicate that an allelic rearrangement in the promoter of MYB10 has generated an autoregulatory locus, and this autoregulation is sufficient to account for the increase in MYB10 transcript levels and subsequent ectopic accumulation of anthocyanins throughout the plant.
Resumo:
This study compared the determinants of physical activity in active and low-active African-American sixth grade students (N=108, 57 F, 51 M). Objective assessments of physical activity over a seven-day period were obtained using the CSA 7164 accelerometer. Students were classified as active if they exhibited three pr more 20-minute bouts of moderate to vigorous physical activity over the seven-day period. Relative to low-actives, active boys reported significantly higher levels of self-efficacy, greater involvement in community physical activity organizations, and were significantly more likely to perceive their mother us active. Relative to low-actives, active girls reported significantly higher levels of physical activity self-efficacy, greater positive beliefs regarding physical activity outcomes, and were significantly less likely to watch television or play video games for greater than or equal to 3 hrs/day. These observations provide preliminary guidance as to the design of physical activity interventions targeted at African-American youth.
Resumo:
This study aimed to assess the efficacy of a general practice based intervention to increase physical activity (PA) levels among 50-70 year old adults. One hundred and thirty-six inactive patients (50-70 years) were randomised into three groups. All participants received brief advice and a written prescription from a GP. Group one received this 'usual care' only (GP, n=46); group two received individualised counselling and follow-up contact from an Exercise Scientist (ES, n=45); group three received a pedometer to supplement the ES counselling (PED, n=45). The Active Australia Survey was administered at baseline, after the 12- week intervention and at a 24-week follow-up. One-way ANOVA showed no significant group differences at baseline in self-reported PA. Average time spent walking increased in all three groups at the 24-week follow-up (GP, 68158min/wk, p=0.006; ES, 83160min/wk, p=0.001; PED, 87132min/wk, p<0.001). Total time in PA (weighted min/wk) also increased significantly in all three groups (GP, 98 213min/wk, p=0.003; ES, 108 182min/wk, p<0.001; PED, 158 229min/wk, p<0.001 ). The proportion of participants who initially did not meet National PA Guidelines (150 minutes and 5 sessions/week) but who met the Guidelines at the 12 and 24-week follow-up was 15% (12 weeks) and 20% (24 weeks) in the GP group compared with 36% and 24% in the ES group and 20% and 42% in the PED group. All three intervention strategies were effective in increasing PA, but the ES intervention resulted in a higher proportion of active participants after 12 weeks and the PED group resulted in a higher proportion of active participants after 24 weeks.
Resumo:
This study aimed to assess the efficacy of a general practice based intervention to increase physical activity (PA) levels among 50-70 year old adults. One hundred and thirty-six inactive patients (50-70 years) were randomised into three groups. All participants received brief advice and a written prescription from a GP. Group one received this 'usual care' only (GP, n=46); group two received individualised counselling and follow-up contact from an Exercise Scientist (ES, n=45); group three received a pedometer to supplement the ES counselling (PED, n=45). The Active Australia Survey was administered at baseline, after the 12- week intervention and at a 24-week follow-up. One-way ANOVA showed no significant group differences at baseline in self-reported PA. Average time spent walking increased in all three groups at the 24-week follow-up (GP, 68158min/wk, p=0.006; ES, 83160min/wk, p=0.001; PED, 87132min/wk, p<0.001). Total time in PA (weighted min/wk) also increased significantly in all three groups (GP, 98 213min/wk, p=0.003; ES, 108 182min/wk, p<0.001; PED, 158 229min/wk, p<0.001 ). The proportion of participants who initially did not meet National PA Guidelines (150 minutes and 5 sessions/week) but who met the Guidelines at the 12 and 24-week follow-up was 15% (12 weeks) and 20% (24 weeks) in the GP group compared with 36% and 24% in the ES group and 20% and 42% in the PED group. All three intervention strategies were effective in increasing PA, but the ES intervention resulted in a higher proportion of active participants after 12 weeks and the PED group resulted in a higher proportion of active participants after 24 weeks.
Resumo:
Tissue engineering is a multidisciplinary field with the potential to replace tissues lost as a result of trauma, cancer surgery, or organ dysfunction. The successful production, integration, and maintenance of any tissue-engineered product are a result of numerous molecular interactions inside and outside the cell. We consider the essential elements for successful tissue engineering to be a matrix scaffold, space, cells, and vasculature, each of which has a significant and distinct molecular underpinning (Fig. 1). Our approach capitalizes on these elements. Originally developed in the rat, our chamber model (Fig. 2) involves the placement of an arteriovenous loop (the vascular supply) in a polycarbonate chamber (protected space) with the addition of cells and an extracellular matrix such as Matrigel or endogenous fibrin (34, 153, 246, 247). This model has also been extended to the rabbit and pig (J. Dolderer, M. Findlay, W. Morrison, manuscript in preparation), and has been modified for the mouse to grow adipose tissue and islet cells (33, 114, 122) (Fig. 3)...