158 resultados para uncertainties
Resumo:
We address robust stabilization problem for networked control systems with nonlinear uncertainties and packet losses by modelling such systems as a class of uncertain switched systems. Based on theories on switched Lyapunov functions, we derive the robustly stabilizing conditions for state feedback stabilization and design packet-loss dependent controllers by solving some matrix inequalities. A numerical example and some simulations are worked out to demonstrate the effectiveness of the proposed design method.
Resumo:
This study is an inquiry into the professional identity constructions of early childhood educators, where identity is conceptualised as social and contextual. Through a genealogical analysis of narratives of four Queensland early childhood teachers, the thesis renders as problematic universal and fixed notions of what it is to be an early childhood professional. The data are the four teachers’ professional life history narratives recounted through a series of conversational interviews with each participant. As they spoke about professionalism and ethics, these teachers struggled to locate themselves as professionals, as they drew on a number of dominant discourses available to them. These dominant discourses were located and mapped through analysis of the participants’ talk about relationships with parents, colleagues and authorities. Genealogical analysis enabled multiple readings of the ways in which the participants’ talk held together certainties and uncertainties, as they recounted their experiences and spoke of early childhood expertise, relational engagement and ethics. The thesis concludes with suggestions for ways to support early childhood teachers and pre-service teachers to both engage with and resist normative processes and expectations of professional identity construction. In so doing, multiple and contextual opportunities can be made available when it comes to being professional and ‘doing’ ethics. The thesis makes an argument for new possibilities for thinking and speaking professional identities that include both certainty and uncertainty, comfort and discomfort, and these seemingly oppositional terms are held together in tension, with an insistence that both are necessary and true. The use of provocations offers tools through which pre-service teachers, teachers and teacher educators can access new positions associated with certainties and uncertainties in professional identities. These new positions call for work that supports experiences of ‘de-comfort’ – that is, experiences that encourage early childhood educators to step away from the comfort zones that can become part of expertise, professional relationships and ethics embedded within normative representations of what it is to be an early childhood professional.
Resumo:
Network induced delay in networked control systems (NCS) is inherently non-uniformly distributed and behaves with multifractal nature. However, such network characteristics have not been well considered in NCS analysis and synthesis. Making use of the information of the statistical distribution of NCS network induced delay, a delay distribution based stochastic model is adopted to link Quality-of-Control and network Quality-of-Service for NCS with uncertainties. From this model together with a tighter bounding technology for cross terms, H∞ NCS analysis is carried out with significantly improved stability results. Furthermore, a memoryless H∞ controller is designed to stabilize the NCS and to achieve the prescribed disturbance attenuation level. Numerical examples are given to demonstrate the effectiveness of the proposed method.
Resumo:
This article examines the moment of exchange between artist, audience and culture in Live Art. Drawing on historical and contemporary examples, including examples from the Exist in 08 Live Art Event in Brisbane, Australia, in October 2008, it argues that Live Art - be it body art, activist art, site-specific performance, or other sorts of performative intervention in the public sphere - is characterised by a common set of claims about activating audiences, asking them to reflect on cultural norms challenged in the work. Live Art presents risky actions, in a context that blurs the boundaries between art and reality, to position audients as ‘witnesses’ who are personally implicated in, and responsible for, the actions unfolding before them. This article problematises assumptions about the way the uncertainties embedded in the Live Art encounter contribute to its deconstructive agenda. It uses the ethical theory of Emmanuel Levinas, Hans-Thies Lehmann and Dwight Conquergood to examine the mechanics of reductive, culturally-recuperative readings that can limit the efficacy of the Live Art encounter. It argues that, though ‘witnessing’ in Live Art depends on a relation to the real - real people, taking real risks, in real places - if it fails to foreground theatrical frame it is difficult for audients to develop the dual consciousness of the content, and their complicity in that content, that is the starting point for reflexivity, and response-ability, in the ethical encounter.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.
Resumo:
This thesis establishes performance properties for approximate filters and controllers that are designed on the basis of approximate dynamic system representations. These performance properties provide a theoretical justification for the widespread application of approximate filters and controllers in the common situation where system models are not known with complete certainty. This research also provides useful tools for approximate filter designs, which are applied to hybrid filtering of uncertain nonlinear systems. As a contribution towards applications, this thesis also investigates air traffic separation control in the presence of measurement uncertainties.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research examining effects of uncertainties of generic WSN platform and verifying the capability of SHM-oriented WSNs, particularly on demanding SHM applications like modal analysis and damage identification of real civil structures. This article first reviews the major technical uncertainties of both generic and SHM-oriented WSN platforms and efforts of SHM research community to cope with them. Then, effects of the most inherent WSN uncertainty on the first level of a common Output-only Modal-based Damage Identification (OMDI) approach are intensively investigated. Experimental accelerations collected by a wired sensory system on a benchmark civil structure are initially used as clean data before being contaminated with different levels of data pollutants to simulate practical uncertainties in both WSN platforms. Statistical analyses are comprehensively employed in order to uncover the distribution pattern of the uncertainty influence on the OMDI approach. The result of this research shows that uncertainties of generic WSNs can cause serious impact for level 1 OMDI methods utilizing mode shapes. It also proves that SHM-WSN can substantially lessen the impact and obtain truly structural information without having used costly computation solutions.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making
Resumo:
Background Climate change may affect mortality associated with air pollutants, especially for fine particulate matter (PM2.5) and ozone (O3). Projection studies of such kind involve complicated modelling approaches with uncertainties. Objectives We conducted a systematic review of researches and methods for projecting future PM2.5-/O3-related mortality to identify the uncertainties and optimal approaches for handling uncertainty. Methods A literature search was conducted in October 2013, using the electronic databases: PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 to September 2013. Discussion Fifteen studies fulfilled the inclusion criteria. Most studies reported that an increase of climate change-induced PM2.5 and O3 may result in an increase in mortality. However, little research has been conducted in developing countries with high emissions and dense populations. Additionally, health effects induced by PM2.5 may dominate compared to those caused by O3, but projection studies of PM2.5-related mortality are fewer than those of O3-related mortality. There is a considerable variation in approaches of scenario-based projection researches, which makes it difficult to compare results. Multiple scenarios, models and downscaling methods have been used to reduce uncertainties. However, few studies have discussed what the main source of uncertainties is and which uncertainty could be most effectively reduced. Conclusions Projecting air pollution-related mortality requires a systematic consideration of assumptions and uncertainties, which will significantly aid policymakers in efforts to manage potential impacts of PM2.5 and O3 on mortality in the context of climate change.
Resumo:
Resource assignment and scheduling is a difficult task when job processing times are stochastic, and resources are to be used for both known and unknown demand. To operate effectively within such an environment, several novel strategies are investigated. The first focuses upon the creation of a robust schedule, and utilises the concept of strategically placed idle time (i.e. buffering). The second approach introduces the idea of maintaining a number of free resources at each time, and culminates in another form of strategically placed buffering. The attraction of these approaches is that they are easy to grasp conceptually, and mimic what practitioners already do in practice. Our extensive numerical testing has shown that these techniques ensure more prompt job processing, and reduced job cancellations and waiting time. They are effective in the considered setting and could easily be adapted for many real life problems, for instance those in health care. This article has more importantly demonstrated that integrating the two approaches is a better strategy and will provide an effective stochastic scheduling approach.
Resumo:
This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty.
Resumo:
This paper presents an uncertainty quantification study of the performance analysis of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multi-purpose Small Power Unit. A deterministic 3D volume-averaged Computational Fluid Dynamics (CFD) solver is coupled with a non-statistical generalized Polynomial Chaos (gPC) representation based on a pseudo-spectral projection method. One of the advantages of this approach is that it does not require any modification of the CFD code for the propagation of random disturbances in the aerodynamic and geometric fields. The stochastic results highlight the importance of the blade thickness and trailing edge tip radius on the total-to-static efficiency of the turbine compared to the angular velocity and trailing edge tip length. From a theoretical point of view, the use of the gPC representation on an arbitrary grid also allows the investigation of the sensitivity of the blade thickness profiles on the turbine efficiency. The gPC approach is also applied to coupled random parameters. The results show that the most influential coupled random variables are trailing edge tip radius coupled with the angular velocity.