77 resultados para ultra high energy photons and neutrinos
Resumo:
The ability of metals to store or trap considerable amounts of energy, and thus exist in a non-equilibrium or metastable state, is very well known in metallurgy; however, such behaviour, which is intimately connected with the defect character of metals, has been largely ignored in noble metal surface electrochemistry. Techniques for generating unusually high energy surface states for gold, and the unusual voltammetric responses of such states, are outlined. The surprisingly high (and complex) electrocatalytic activity of gold in aqueous media is attributed to the presence of a range of such non-equilibrium states as the vital entities at active sites on conventional gold surfaces. The possible relevance of these ideas to account for the remarkable catalytic activity of oxide-supported gold microparticles is briefly outlined.
Resumo:
In this article we introduce the term “energy polarization” to explain the politics of energy market reform in the Russian Duma. Our model tests the impact of regional energy production, party cohesion and ideology, and electoral mandate on the energy policy decisions of the Duma deputies (oil, gas, and electricity bills and resolution proposals) between 1994 and 2003. We find a strong divide between Single-Member District (SMD) and Proportional Representation (PR) deputies High statistical significance of gas production is demonstrated throughout the three Duma terms and shows Gazprom's key position in the post-Soviet Russian economy. Oil production is variably significant in the two first Dumas, when the main legislative debates on oil privatization occur. There is no constant left–right continuum, which is consistent with the deputies' proclaimed party ideology. The pro- and anti-reform poles observed in our Poole-based single dimensional scale are not necessarily connected with liberal and state-oriented regulatory policies, respectively. Party switching is a solid indicator of Russia's polarized legislative dynamics when it comes to energy sector reform.
Resumo:
Objective: To assess the effect of graded increases in exercised-induced energy expenditure (EE) on appetite, energy intake (EI), total daily EE and body weight in men living in their normal environment and consuming their usual diets. Design: Within-subject, repeated measures design. Six men (mean (s.d.) age 31.0 (5.0) y; weight 75.1 (15.96) kg; height 1.79 (0.10) m; body mass index (BMI) 23.3(2.4) kg/m2), were each studied three times during a 9 day protocol, corresponding to prescriptions of no exercise, (control) (Nex; 0 MJ/day), medium exercise level (Mex; ~1.6 MJ/day) and high exercise level (Hex; ~3.2 MJ/day). On days 1-2 subjects were given a medium fat (MF) maintenance diet (1.6 ´ resting metabolic rate (RMR)). Measurements: On days 3-9 subjects self-recorded dietary intake using a food diary and self-weighed intake. EE was assessed by continual heart rate monitoring, using the modified FLEX method. Subjects' HR (heart rate) was individually calibrated against submaximal VO2 during incremental exercise tests at the beginning and end of each 9 day study period. Respiratory exchange was measured by indirect calorimetry. Subjects completed hourly hunger ratings during waking hours to record subjective sensations of hunger and appetite. Body weight was measured daily. Results: EE amounted to 11.7, 12.9 and 16.8 MJ/day (F(2,10)=48.26; P<0.001 (s.e.d=0.55)) on the Nex, Mex and Hex treatments, respectively. The corresponding values for EI were 11.6, 11.8 and 11.8 MJ/day (F(2,10)=0.10; P=0.910 (s.e.d.=0.10)), respectively. There were no treatment effects on hunger, appetite or body weight, but there was evidence of weight loss on the Hex treatment. Conclusion: Increasing EE did not lead to compensation of EI over 7 days. However, total daily EE tended to decrease over time on the two exercise treatments. Lean men appear able to tolerate a considerable negative energy balance, induced by exercise, over 7 days without invoking compensatory increases in EI.
Resumo:
Summary There are four interactions to consider between energy intake (EI) and energy expenditure (EE) in the development and treatment of obesity. (1) Does sedentariness alter levels of EI or subsequent EE? and (2) Do high levels of EI alter physical activity or exercise? (3) Do exercise-induced increases in EE drive EI upwards and undermine dietary approaches to weight management and (4) Do low levels of EI elevate or decrease EE? There is little evidence that sedentariness alters levels of EI. This lack of cross-talk between altered EE and EI appears to promote a positive EB. Lifestyle studies also suggest that a sedentary routine actually offers the opportunity for over-consumption. Substantive changes in non exercise activity thermogenesis are feasible, but not clearly demonstrated. Cross talk between elevated EE and EI is initially too weak and takes too long to activate, to seriously threaten dietary approaches to weight management. It appears that substantial fat loss is possible before intake begins to track a sustained elevation of EE. There is more evidence that low levels of EI does lower physical activity levels, in relatively lean men under conditions of acute or prolonged semi-starvation and in dieting obese subjects. During altered EB there are a number of small but significant changes in the components of EE, including (i) sleeping and basal metabolic rate, (ii) energy cost of weight change alters as weight is gained or lost, (iii) exercise efficiency, (iv) energy cost of weight bearing activities, (v) during substantive overfeeding diet composition (fat versus carbohydrate) will influence the energy cost of nutrient storage by ~ 15%. The responses (i-v) above are all “obligatory” responses. Altered EB can also stimulate facultative behavioural responses, as a consequence of cross-talk between EI and EE. Altered EB will lead to changes in the mode duration and intensity of physical activities. Feeding behaviour can also change. The degree of inter-individual variability in these responses will define the scope within which various mechanisms of EB compensation can operate. The relative importance of “obligatory” versus facultative, behavioural responses -as components of EB control- need to be defined.
Resumo:
Enormous amounts of money and energy are being devoted to the development, use and organisation of computer-based scientific visualisations (e.g. animations and simulations) in science education. It seems plausible that visualisations that enable students to gain visual access to scientific phenomena that are too large, too small or occur too quickly or too slowly to be seen by the naked eye, or to scientific concepts and models, would yield enhanced conceptual learning. When the literature is searched, however, it quickly becomes apparent that there is a dearth of quantitative evidence for the effectiveness of scientific visualisations in enhancing students’ learning of science concepts. This paper outlines an Australian project that is using innovative research methodology to gather evidence on this question in physics and chemistry classrooms.
Resumo:
Objectives: To investigate if low-dose lithium may counteract the microstructural and metabolic brain changes proposed to occur in individuals at ultra-high risk (UHR) for psychosis. Methods: Hippocampal T2 relaxation time (HT2RT) and proton magnetic resonance spectroscopy (1H-MRS) measurements were performed prior to initiation and following three months of treatment in 11 UHR patients receiving low-dose lithium and 10 UHR patients receiving treatment as usual (TAU). HT2RT and 1H-MRS percentage change scores between scans were compared using one-way ANOVA and correlated with behavioural change scores. Results: Low-dose lithium significantly reduced HT2RT compared to TAU (p=0.018). No significant group by time effects were seen for any brain metabolites as measured with 1H-MRS, although myo-inositol, creatine, choline-containing compounds and NAA increased in the group receiving low-dose lithium and decreased or remained unchanged in subjects receiving TAU. Conclusions: This pilot study suggests that low-dose lithium may protect the microstructure of the hippocampus in UHR states as reflected by significantly decreasing HT2RT. Larger scale replication studies in UHR states using T2 relaxation time as a proxy for emerging brain pathology seem a feasible mean to test neuroprotective strategies such as low-dose lithium as potential treatments to delay or even prevent the progression to full-blown disorder.
Resumo:
Background: There are strong logical reasons why energy expended in metabolism should influence the energy acquired in food-intake behavior. However, the relation has never been established, and it is not known why certain people experience hunger in the presence of large amounts of body energy. Objective: We investigated the effect of the resting metabolic rate (RMR) on objective measures of whole-day food intake and hunger. Design: We carried out a 12-wk intervention that involved 41 overweight and obese men and women [mean ± SD age: 43.1 ± 7.5 y; BMI (in kg/m2): 30.7 ± 3.9] who were tested under conditions of physical activity (sedentary or active) and dietary energy density (17 or 10 kJ/g). RMR, daily energy intake, meal size, and hunger were assessed within the same day and across each condition. Results: We obtained evidence that RMR is correlated with meal size and daily energy intake in overweight and obese individuals. Participants with high RMRs showed increased levels of hunger across the day (P < 0.0001) and greater food intake (P < 0.00001) than did individuals with lower RMRs. These effects were independent of sex and food energy density. The change in RMR was also related to energy intake (P < 0.0001). Conclusions: We propose that RMR (largely determined by fat-free mass) may be a marker of energy intake and could represent a physiologic signal for hunger. These results may have implications for additional research possibilities in appetite, energy homeostasis, and obesity. This trial was registered under international standard identification for controlled trials as ISRCTN47291569.
Resumo:
Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.
Resumo:
Increased focus on energy cost savings and carbon footprint reduction efforts improved the visibility of building energy simulation, which became a mandatory requirement of several building rating systems. Despite developments in building energy simulation algorithms and user interfaces, there are some major challenges associated with building energy simulation; an important one is the computational demands and processing time. In this paper, we analyze the opportunities and challenges associated with this topic while executing a set of 275 parametric energy models simultaneously in EnergyPlus using a High Performance Computing (HPC) cluster. Successful parallel computing implementation of building energy simulations will not only improve the time necessary to get the results and enable scenario development for different design considerations, but also might enable Dynamic-Building Information Modeling (BIM) integration and near real-time decision-making. This paper concludes with the discussions on future directions and opportunities associated with building energy modeling simulations.
Resumo:
Background We examined pituitary volume before the onset of psychosis in subjects who were at ultra-high risk (UHR) for developing psychosis. Methods Pituitary volume was measured on 1.5-mm, coronal, 1.5-T magnetic resonance images in 94 UHR subjects recruited from admissions to the Personal Assessment and Crisis Evaluation Clinic in Melbourne, Australia and in 49 healthy control subjects. The UHR subjects were scanned at baseline and were followed clinically for a minimum of 1 year to detect transition to psychosis. Results Within the UHR group, a larger baseline pituitary volume was a significant predictor of future transition to psychosis. The UHR subjects who later went on to develop psychosis (UHR-P, n = 31) had a significantly larger (+12%; p = .001) baseline pituitary volume compared with UHR subjects who did not go on to develop psychosis (UHR-NP, n = 63). The survival analysis conducted by Cox regression showed that the risk of developing psychosis during the follow-up increased by 20% for every 10% increase in baseline pituitary volume (p = .002). Baseline pituitary volume of the UHR-NP subjects was smaller not only compared with UHR-P (as described above) but also compared with control subjects (−6%; p = .032). Conclusions The phase before the onset of psychosis is associated with a larger pituitary volume, suggesting activation of the HPA axis.
Resumo:
Aims We combine measurements of weak gravitational lensing from the CFHTLS-Wide survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain joint constraints on cosmological parameters, in particular, the dark-energy equation-of-state parameter w. We assess the influence of systematics in the data on the results and look for possible correlations with cosmological parameters. Methods We implemented an MCMC algorithm to sample the parameter space of a flat CDM model with a dark-energy component of constant w. Systematics in the data are parametrised and included in the analysis. We determine the influence of photometric calibration of SNIa data on cosmological results by calculating the response of the distance modulus to photometric zero-point variations. The weak lensing data set is tested for anomalous field-to-field variations and a systematic shape measurement bias for high-redshift galaxies. Results Ignoring photometric uncertainties for SNLS biases cosmological parameters by at most 20% of the statistical errors, using supernovae alone; the parameter uncertainties are underestimated by 10%. The weak-lensing field-to-field variance between 1 deg2-MegaCam pointings is 5-15% higher than predicted from N-body simulations. We find no bias in the lensing signal at high redshift, within the framework of a simple model, and marginalising over cosmological parameters. Assuming a systematic underestimation of the lensing signal, the normalisation increases by up to 8%. Combining all three probes we obtain -0.10 < 1 + w < 0.06 at 68% confidence ( -0.18 < 1 + w < 0.12 at 95%), including systematic errors. Our results are therefore consistent with the cosmological constant . Systematics in the data increase the error bars by up to 35%; the best-fit values change by less than 0.15.