151 resultados para tree nutrition
Resumo:
Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.
Resumo:
We introduce K-tree in an information retrieval context. It is an efficient approximation of the k-means clustering algorithm. Unlike k-means it forms a hierarchy of clusters. It has been extended to address issues with sparse representations. We compare performance and quality to CLUTO using document collections. The K-tree has a low time complexity that is suitable for large document collections. This tree structure allows for efficient disk based implementations where space requirements exceed that of main memory.
Resumo:
Counselling children often requires the use of supplementary strategies in order to interest and engage the child in the therapeutic process. One such strategy is the Metaphorical Fruit Tree (MFT); an art metaphor suited to exploring and developing self-concept. Quantitative and qualitative data was used to explore the relationships between children’s ability to use metaphor, age, gender, and level of emotional competence (N = 58). Quantitative and qualitative analyses revealed a significant negative relationship between self-reported emotional competence and ability to use the MFT. It is proposed that children rely on different processes to understand self and as children’s ability to cognitively report on their emotional capabilities via the Emotional Competence Questionnaire (ECQ) increases, their ability to report creatively on those capabilities via the MFT is undermined. It is suggested that the MFT may be used, via creative processes and as an alternative to cognitive processes, to increase understanding and awareness of intrapersonal and interpersonal concepts of self in the child during counselling.
Resumo:
This paper describes the approach taken to the XML Mining track at INEX 2008 by a group at the Queensland University of Technology. We introduce the K-tree clustering algorithm in an Information Retrieval context by adapting it for document clustering. Many large scale problems exist in document clustering. K-tree scales well with large inputs due to its low complexity. It offers promising results both in terms of efficiency and quality. Document classification was completed using Support Vector Machines.
Resumo:
It is important to detect and treat malnutrition in hospital patients so as to improve clinical outcome and reduce hospital stay. The aim of this study was to develop and validate a nutrition screening tool with a simple and quick scoring system for acute hospital patients in Singapore. In this study, 818 newly admitted patients aged above 18 years old were screened using five parameters that contribute to the risk of malnutrition. A dietitian blinded to the nutrition screening score assessed the same patients using the reference standard, Subjective Global Assessment (SGA) within 48 hours. The sensitivity and specificity were established using the Receiver Operator Characteristics (ROC) curve and the best cutoff scores determined. The nutrition parameter with the largest Area Under the ROC Curve (AUC) was chosen as the final screening tool, which was named 3-Minute Nutrition Screening (3-MinNS). The combination of the parameters weight loss, intake and muscle wastage (3-MinNS), gave the largest AUC when compared with SGA. Using 3-MinNS, the best cutoff point to identify malnourished patients is three (sensitivity 86%, specificity 83%). The cutoff score to identify subjects at risk of severe malnutrition is five (sensitivity 93%, specificity 86%). 3-Minute Nutrition Screening is a valid, simple and rapid tool to identify patients at risk of malnutrition in Singapore acute hospital patients. It is able to differentiate patients at risk of moderate malnutrition and severe malnutrition for prioritization and management purposes.
Resumo:
The application of object-based approaches to the problem of extracting vegetation information from images requires accurate delineation of individual tree crowns. This paper presents an automated method for individual tree crown detection and delineation by applying a simplified PCNN model in spectral feature space followed by post-processing using morphological reconstruction. The algorithm was tested on high resolution multi-spectral aerial images and the results are compared with two existing image segmentation algorithms. The results demonstrate that our algorithm outperforms the other two solutions with the average accuracy of 81.8%.