153 resultados para spotsize converter
Resumo:
In this paper, the stability of an autonomous microgrid with multiple distributed generators (DG) is studied through eigenvalue analysis. It is assumed that all the DGs are connected through Voltage Source Converter (VSC) and all connected loads are passive. The VSCs are controlled by state feedback controller to achieve desired voltage and current outputs that are decided by a droop controller. The state space models of each of the converters with its associated feedback are derived. These are then connected with the state space models of the droop, network and loads to form a homogeneous model, through which the eigenvalues are evaluated. The system stability is then investigated as a function of the droop controller real and reac-tive power coefficients. These observations are then verified through simulation studies using PSCAD/EMTDC. It will be shown that the simulation results closely agree with stability be-havior predicted by the eigenvalue analysis.
Resumo:
The multi-level current reinjection concept described in literature is well-known to produce high quality AC current waveforms in high power and high voltage self-commutating current source converters. This paper proposes a novel reinjection circuitry which is capable of producing a 7-level reinjection current. It is shown that this reinjection current effectively increases the pulse number of the converter to 72. The use of PSCAD/EMTDC simulation validates the functionality of the proposed concept illustrating its effectiveness on both AC and DC sides of the converter.
Resumo:
A Positive Buck- Boost (PBB) converter is a known DC-DC converter that can operate in step up and step down modes. Unlike Buck, Boost, and Inverting Buck Boost converters, the inductor current of a PBB can be controlled independently of its voltage conversion ratio. In other words, the inductor of PBB can be utilised as an energy storage unit in addition to its main function of energy transfer. In this paper, the capability of PBB to store energy has been utilised to achieve robustness against input voltage fluctuations and output current changes. The control strategy has been developed to keep accuracy, affordability, and simplicity acceptable. To improve the efficiency of the system a Smart Load Controller (SLC) has been suggested. Applying SLC extra current storage occurs when there is sudden loads change otherwise little extra current is stored.
Resumo:
This paper describes protection and control of a microgrid with converter interfaced micro sources. The proposed protection and control scheme consider both grid connected and autonomous operation of the microgrid. A protection scheme, capable of detecting faults effectively in both grid connected and islanded operations is proposed. The main challenge of the protection, due to current limiting state of the converters is overcome by using admittance relays. The relays operate according to the inverse time characteristic based on measured admittance of the line. The proposed scheme isolates the fault from both sides, while downstream side of the microgrid operates in islanding condition. Moreover faults can be detected in autonomous operation. In grid connected mode distributed generators (DG) supply the rated power while in absence of the grid, DGs share the entire power requirement proportional to rating based on output voltage angle droop control. The protection scheme ensures minimum load shedding with isolating the faulted network and DG control provides a smooth islanding and resynchronization operation. The efficacy of coordinated control and protection scheme has been validated through simulation for various operating conditions.
Resumo:
Multi-output boost (MOB) converter is a novel DC-DC converter unlike the regular boost converter, has the ability to share its total output voltage and to have different series output voltage from a given duty cycle for low and high power applications. In this paper, discrete voltage control with inner hysteresis current control loop has been proposed to keep the simplicity of the control law for the double-output MOB converter, which can be implemented by a combination of analogue and logical ICs or simple microcontroller to constrain the output voltages of MOB converter at their reference voltages against variation in load or input voltage. The salient features of the proposed control strategy are simplicity of implementation and ease to extend to multiple outputs in the MOB converter. Simulation and experimental results are presented to show the validity of control strategy.
Resumo:
A high voltage power converter is presented in this paper and is based on a Capacitor-Diode Voltage Multiplier (CDVM) supplied through an inverter. This power converter has the capabilities of generating variable high DC voltage with improved transient response. The simulation results which are presented in this paper verify that due to its fast transient response, this converter can be used as a high DC voltage source in many applications.
Resumo:
A high voltage pulsed power supply is proposed in this paper based on oscillation between an inductor and a capacitor in an LC circuit. A two-leg resonant circuit, supplied through an inverter with an alternative voltage waveform, can generate output voltage up to four times an input voltage magnitude. Bipolar and unipolar modulations are used in a single phase inverter to analyse their effects on the proposed resonant converter. Simulations have been carried out to evaluate the proposed topology and control.
Resumo:
This paper proposes new droop control methods for load sharing in a rural area with distributed generation. Highly resistive lines, typical of rural low voltage networks, always create a big challenge for conventional droop control. To overcome the conflict between higher feedback gain for better power sharing and system stability in angle droop, two control methods have been proposed. The first method considers no communication among the distributed generators (DGs) and regulates the converter output voltage and angle ensuring proper sharing of load in a system having strong coupling between real and reactive power due to high line resistance. The second method, based on a smattering of communication, modifies the reference output volt-age angle of the DGs depending on the active and reactive power flow in the lines connected to point of common coupling (PCC). It is shown that with the second proposed control method, an economical and minimum communication system can achieve significant improvement in load sharing. The difference in error margin between proposed control schemes and a more costly high bandwidth communication system is small and the later may not be justified considering the increase in cost. The proposed control shows stable operation of the system for a range of operating conditions while ensuring satisfactory load sharing.
Resumo:
A novel H-bridge multilevel PWM converter topology based on a series connection of a high voltage (HV) diode-clamped inverter and a low voltage (LV) conventional inverter is proposed. A DC link voltage arrangement for the new hybrid and asymmetric solution is presented to have a maximum number of output voltage levels by preserving the adjacent switching vectors between voltage levels. Hence, a fifteen-level hybrid converter can be attained with a minimum number of power components. A comparative study has been carried out to present high performance of the proposed configuration to approach a very low THD of voltage and current, which leads to the possible elimination of output filter. Regarding the proposed configuration, a new cascade inverter is verified by cascading an asymmetrical diode-clamped inverter, in which nineteen levels can be synthesized in output voltage with the same number of components. To balance the DC link capacitor voltages for the maximum output voltage resolution as well as synthesise asymmetrical DC link combination, a new Multi-output Boost (MOB) converter is utilised at the DC link voltage of a seven-level H-bridge diode-clamped inverter. Simulation and hardware results based on different modulations are presented to confirm the validity of the proposed approach to achieve a high quality output voltage.
Resumo:
Purpose Multi-level diode-clamped inverters have the challenge of capacitor voltage balancing when the number of DC-link capacitors is three or more. On the other hand, asymmetrical DC-link voltage sources have been applied to increase the number of voltage levels without increasing the number of switches. The purpose of this paper is to show that an appropriate multi-output DC-DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC-link voltages advantages. Design/methodology/approach A family of multi-output DC-DC converters is presented in this paper. The application of these converters is to convert the output voltage of a photovoltaic (PV) panel to regulate DC-link voltages of an asymmetrical four-level diode-clamped inverter utilized for domestic applications. To verify the versatility of the presented topology, simulations have been directed for different situations and results are presented. Some related experiments have been developed to examine the capabilities of the proposed converters. Findings The three-output voltage-sharing converters presented in this paper have been mathematically analysed and proven to be appropriate to improve the quality of the residential application of PV by means of four-level asymmetrical diode-clamped inverter supplying highly resistive loads. Originality/value This paper shows that an appropriate multi-output DC-DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC-link voltages advantages and that there is a possibility of operation at high-modulation index despite reference voltage magnitude and power factor variations.
Resumo:
A Positive Buck-Boost converter is a known DC-DC converter which may be controlled to act as Buck or Boost converter with same polarity of the input voltage. This converter has four switching states which include all the switching states of the above mentioned DC-DC converters. In addition there is one switching state which provides a degree of freedom for the positive Buck-Boost converter in comparison to the Buck, Boost, and inverting Buck-Boost converters. In other words the Positive Buck-Boost Converter shows a higher level of flexibility for its inductor current control compared to the other DC-DC converters. In this paper this extra degree of freedom is utilised to increase the robustness against input voltage fluctuations and load changes. To address this capacity of the positive Buck-Boost converter, two different control strategies are proposed which control the inductor current and output voltage against any fluctuations in input voltage and load changes. Mathematical analysis for dynamic and steady state conditions are presented in this paper and simulation results verify the proposed method.
Resumo:
This paper presents a new multi-output DC/DC converter topology that has step-up and step-down conversion capabilities. In this topology, several output voltages can be generated which can be used in different applications such as multilevel converters with diode-clamped topology or power supplies with several voltage levels. Steady state and dynamic equations of the proposed multi-output converter have been developed, that can be used for steady state and transient analysis. Two control techniques have been proposed for this topology based on constant and dynamic hysteresis band height control to address different applications. Simulations have been performed for different operating modes and load conditions to verify the proposed topology and its control technique. Additionally, a laboratory prototype is designed and implemented to verify the simulation results.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
Resumo:
In recent years, multilevel converters are becoming more popular and attractive than traditional converters in high voltage and high power applications. Multilevel converters are particularly suitable for harmonic reduction in high power applications where semiconductor devices are not able to operate at high switching frequencies or in high voltage applications where multilevel converters reduce the need to connect devices in series to achieve high switch voltage ratings. This thesis investigated two aspects of multilevel converters: structure and control. The first part of this thesis focuses on inductance between a DC supply and inverter components in order to minimise loop inductance, which causes overvoltages and stored energy losses during switching. Three dimensional finite element simulations and experimental tests have been carried out for all sections to verify theoretical developments. The major contributions of this section of the thesis are as follows: The use of a large area thin conductor sheet with a rectangular cross section separated by dielectric sheets (planar busbar) instead of circular cross section wires, contributes to a reduction of the stray inductance. A number of approximate equations exist for calculating the inductance of a rectangular conductor but an assumption was made that the current density was uniform throughout the conductors. This assumption is not valid for an inverter with a point injection of current. A mathematical analysis of a planar bus bar has been performed at low and high frequencies and the inductance and the resistance values between the two points of the planar busbar have been determined. A new physical structure for a voltage source inverter with symmetrical planar bus bar structure called Reduced Layer Planar Bus bar, is proposed in this thesis based on the current point injection theory. This new type of planar busbar minimises the variation in stray inductance for different switching states. The reduced layer planar busbar is a new innovation in planar busbars for high power inverters with minimum separation between busbars, optimum stray inductance and improved thermal performances. This type of the planar busbar is suitable for high power inverters, where the voltage source is supported by several capacitors in parallel in order to provide a low ripple DC voltage during operation. A two layer planar busbar with different materials has been analysed theoretically in order to determine the resistance of bus bars during switching. Increasing the resistance of the planar busbar can gain a damping ratio between stray inductance and capacitance and affects the performance of current loop during switching. The aim of this section is to increase the resistance of the planar bus bar at high frequencies (during switching) and without significantly increasing the planar busbar resistance at low frequency (50 Hz) using the skin effect. This contribution shows a novel structure of busbar suitable for high power applications where high resistance is required at switching times. In multilevel converters there are different loop inductances between busbars and power switches associated with different switching states. The aim of this research is to consider all combinations of the switching states for each multilevel converter topology and identify the loop inductance for each switching state. Results show that the physical layout of the busbars is very important for minimisation of the loop inductance at each switch state. Novel symmetrical busbar structures are proposed for multilevel converters with diode-clamp and flying-capacitor topologies which minimise the worst case in stray inductance for different switching states. Overshoot voltages and thermal problems are considered for each topology to optimise the planar busbar structure. In the second part of the thesis, closed loop current techniques have been investigated for single and three phase multilevel converters. The aims of this section are to investigate and propose suitable current controllers such as hysteresis and predictive techniques for multilevel converters with low harmonic distortion and switching losses. This section of the thesis can be classified into three parts as follows: An optimum space vector modulation technique for a three-phase voltage source inverter based on a minimum-loss strategy is proposed. One of the degrees of freedom for optimisation of the space vector modulation is the selection of the zero vectors in the switching sequence. This new method improves switching transitions per cycle for a given level of distortion as the zero vector does not alternate between each sector. The harmonic spectrum and weighted total harmonic distortion for these strategies are compared and results show up to 7% weighted total harmonic distortion improvement over the previous minimum-loss strategy. The concept of SVM technique is a very convenient representation of a set of three-phase voltages or currents used for current control techniques. A new hysteresis current control technique for a single-phase multilevel converter with flying-capacitor topology is developed. This technique is based on magnitude and time errors to optimise the level change of converter output voltage. This method also considers how to improve unbalanced voltages of capacitors using voltage vectors in order to minimise switching losses. Logic controls require handling a large number of switches and a Programmable Logic Device (PLD) is a natural implementation for state transition description. The simulation and experimental results describe and verify the current control technique for the converter. A novel predictive current control technique is proposed for a three-phase multilevel converter, which controls the capacitors' voltage and load current with minimum current ripple and switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase five-level inverter with a pure inductive load has been implemented to track three-phase reference currents using analogue circuits and a programmable logic device.