456 resultados para protein markers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To compare proteins related to Alzheimer disease ( AD) in the frontal cortex and cerebellum of subjects with early-onset AD (EOAD) with or without presenilin 1 (PS1) mutations with sporadic late-onset AD ( LOAD) and nondemented control subjects. Methods: Immunohistochemistry, immunoblot analysis, and ELISA were used to detect and assess protein levels in brain. Results: In EOAD and to a lesser extent in LOAD, there was increased amyloid beta (Abeta) deposition (by immunohistochemistry), increased soluble Abeta (by immunoblot analysis), and specific increases in Abeta(40) and Abeta(42) ( by ELISA) in the frontal cortex and, in some cases, in the cerebellum. Surprisingly, immunoblot analysis revealed reduced levels of PS1 in many of the subjects with EOAD with or without PS1 mutations. In those PS1 mutation-bearing subjects with the highest Abeta, PS1 was barely, if at all, detectable. This decrease in PS1 was specific and not attributable solely to neuronal loss because amyloid precursor protein (APP) and the PS1-interacting protein beta-catenin levels were unchanged. Conclusions: This study shows that in the frontal cortex and cerebellum from Alzheimer disease patients harboring certain presenilin 1 mutations, high levels of amyloid beta are associated with low levels of presenilin 1. The study provides the premise for further investigation of mechanisms underlying the downregulation of presenilin 1, which may have considerable pathogenic and therapeutic relevance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Selumetinib (AZD6244, ARRY-142886) is a selective, non-ATP-competitive inhibitor of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-1/2. The range of antitumor activity seen preclinically and in patients highlights the importance of identifying determinants of response to this drug. In large tumor cell panels of diverse lineage, we show that MEK inhibitor response does not have an absolute correlation with mutational or phospho-protein markers of BRAF/MEK, RAS, or phosphoinositide 3-kinase (PI3K) activity. We aimed to enhance predictivity by measuring pathway output through coregulated gene networks displaying differential mRNA expression exclusive to resistant cell subsets and correlated to mutational or dynamic pathway activity. We discovered an 18-gene signature enabling measurement of MEK functional output independent of tumor genotype. Where the MEK pathway is activated but the cells remain resistant to selumetinib, we identified a 13-gene signature that implicates the existence of compensatory signaling from RAS effectors other than PI3K. The ability of these signatures to stratify samples according to functional activation of MEK and/or selumetinib sensitivity was shown in multiple independent melanoma, colon, breast, and lung tumor cell lines and in xenograft models. Furthermore, we were able to measure these signatures in fixed archival melanoma tumor samples using a single RT-qPCR-based test and found intergene correlations and associations with genetic markers of pathway activity to be preserved. These signatures offer useful tools for the study of MEK biology and clinical application of MEK inhibitors, and the novel approaches taken may benefit other targeted therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Poor appetite is a marker of morbidity and mortality in hemodialysis patients, making it an important area for research. Visual analog scales (VAS) can capture a range of subjective sensations related to appetite (such as hunger, desire to eat or fullness), but have not been commonly used to measure appetite in dialysis patients. The aim of this study was to explore the association between retrospective ratings of appetite using VAS and a range of clinical variables as well as biomarkers of appetite in hemodialysis patients.----- Methods: 28 hemodialysis patients (mean age 61±17y, 50% male, median dialysis vintage 19.5(4-101) months) rated their appetite using VAS for hunger, fullness and desire to eat and a 5-point categorical scale measuring general appetite. Blood levels of the appetite peptides leptin, ghrelin and peptide YY were also measured.----- Results: Hunger ratings measured by VAS were significantly (p<0.05) correlated with a range of clinical, nutritional and inflammatory markers: age (r=-0.376), co-morbidities, (r=-0.380) PG-SGA score (r=-0.451), weight (r=-0.375), fat-free mass (r=-0.435), C-Reactive Protein (CRP) (r=-0.383) and Intercellular adhesion molecule (sICAM-1) (r=-0.387). There was a consistent relationship between VAS and appetite on a 5-point categorical scale for questions of hunger, and a similar trend for desire to eat, but not for fullness. Neither method of measuring subjective appetite correlated with appetite peptides.----- Conclusions: Retrospective ratings of hunger on a VAS are associated with a range of clinical variables and further studies are warranted to support their use as a method of measuring appetite in dialysis patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently it has been shown that the consumption of a diet high in saturated fat is associated with impaired insulin sensitivity and increased incidence of type 2 diabetes. In contrast, diets that are high in monounsaturated fatty acids (MUFAs) or polyunsaturated fatty acids (PUFAs), especially very long chain n-3 fatty acids (FAs), are protective against disease. However, the molecular mechanisms by which saturated FAs induce the insulin resistance and hyperglycaemia associated with metabolic syndrome and type 2 diabetes are not clearly defined. It is possible that saturated FAs may act through alternative mechanisms compared to MUFA and PUFA to regulate of hepatic gene expression and metabolism. It is proposed that, like MUFA and PUFA, saturated FAs regulate the transcription of target genes. To test this hypothesis, hepatic gene expression analysis was undertaken in a human hepatoma cell line, Huh-7, after exposure to the saturated FA, palmitate. These experiments showed that palmitate is an effective regulator of gene expression for a wide variety of genes. A total of 162 genes were differentially expressed in response to palmitate. These changes not only affected the expression of genes related to nutrient transport and metabolism, they also extend to other cellular functions including, cytoskeletal architecture, cell growth, protein synthesis and oxidative stress response. In addition, this thesis has shown that palmitate exposure altered the expression patterns of several genes that have previously been identified in the literature as markers of risk of disease development, including CVD, hypertension, obesity and type 2 diabetes. The altered gene expression patterns associated with an increased risk of disease include apolipoprotein-B100 (apo-B100), apo-CIII, plasminogen activator inhibitor 1, insulin-like growth factor-I and insulin-like growth factor binding protein 3. This thesis reports the first observation that palmitate directly signals in cultured human hepatocytes to regulate expression of genes involved in energy metabolism as well as other important genes. Prolonged exposure to long-chain saturated FAs reduces glucose phosphorylation and glycogen synthesis in the liver. Decreased glucose metabolism leads to elevated rates of lipolysis, resulting in increased release of free FAs. Free FAs have a negative effect on insulin action on the liver, which in turn results in increased gluconeogenesis and systemic dyslipidaemia. It has been postulated that disruption of glucose transport and insulin secretion by prolonged excessive FA availability might be a non-genetic factor that has contributed to the staggering rise in prevalence of type 2 diabetes. As glucokinase (GK) is a key regulatory enzyme of hepatic glucose metabolism, changes in its activity may alter flux through the glycolytic and de novo lipogenic pathways and result in hyperglycaemia and ultimately insulin resistance. This thesis investigated the effects of saturated FA on the promoter activity of the glycolytic enzyme, GK, and various transcription factors that may influence the regulation of GK gene expression. These experiments have shown that the saturated FA, palmitate, is capable of decreasing GK promoter activity. In addition, quantitative real-time PCR has shown that palmitate incubation may also regulate GK gene expression through a known FA sensitive transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), which upregulates GK transcription. To parallel the investigations into the mechanisms of FA molecular signalling, further studies of the effect of FAs on metabolic pathway flux were performed. Although certain FAs reduce SREBP-1c transcription in vitro, it is unclear whether this will result in decreased GK activity in vivo where positive effectors of SREBP-1c such as insulin are also present. Under these conditions, it is uncertain if the inhibitory effects of FAs would be overcome by insulin. The effects of a combination of FAs, insulin and glucose on glucose phosphorylation and metabolism in cultured primary rat hepatocytes at concentrations that mimic those in the portal circulation after a meal was examined. It was found that total GK activity was unaffected by an increased concentration of insulin, but palmitate and eicosapentaenoic acid significantly lowered total GK activity in the presence of insulin. Despite the fact that total GK enzyme activity was reduced in response to FA incubation, GK enzyme translocation from the inactive, nuclear bound, to active, cytoplasmic state was unaffected. Interestingly, none of the FAs tested inhibited glucose phosphorylation or the rate of glycolysis when insulin is present. These results suggest that in the presence of insulin the levels of the active, unbound cytoplasmic GK are sufficient to buffer a slight decrease in GK enzyme activity and decreased promoter activity caused by FA exposure. Although a high fat diet has been associated with impaired hepatic glucose metabolism, there is no evidence from this thesis that FAs themselves directly modulate flux through the glycolytic pathway in isolated primary hepatocytes when insulin is also present. Therefore, although FA affected expression of a wide range of genes, including GK, this did not affect glycolytic flux in the presence of insulin. However, it may be possible that a saturated FA-induced decrease in GK enzyme activity when combined with the onset of insulin resistance may promote the dys-regulation of glucose homeostasis and the subsequent development of hyperglycaemia, metabolic syndrome and type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PKU is a genetically inherited inborn error of metabolism caused by a deficiency of the enzyme phenylalanine hydroxylase. The failure of this enzyme causes incomplete metabolism of protein ingested in the diet, specifically the conversion of one amino acid, phenylalanine, to tyrosine, which is a precursor to the neurotransmitter dopamine. Rising levels of phenylalanine is toxic to the developing brain, disrupting the formation of white matter tracts. The impact of tyrosine deficiency is not as well understood, but is hypothesized to lead to a low dopamine environment for the developing brain. Detection in the newborn period and continuous treatment (a low protein phe-restricted diet supplemented with phenylalanine-free protein formulas) has resulted in children with early and continuously treated PKU now developing normal I.Q. However, deficits in executive function (EF) are common, leading to a rate of Attention Deficit Hyperactivity Disorder (ADHD) up to five times the norm. EF worsens with exposure to higher phenylalanine levels, however recent research has demonstrated that a high phenylalanine to tyrosine ratio (phenylalanine:tyrosine ratio), which is hypothesised to lead to poorer dopamine function, has a more negative impact on EF than phenylalanine levels alone. Research and treatment of PKU is currently phenylalanine-focused, with little investigation of the impact of tyrosine on neuropsychological development. There is no current consensus as to the veracity of tyrosine monitoring or treatment in this population. Further, the research agenda in this population has demonstrated a primary focus on EF impairment alone, even though there may be additional neuropsychological skills compromised (e.g., mood, visuospatial deficits). The aim of this PhD research was to identify residual neuropsychological deficits in a cohort of children with early and continuously treated phenylketonuria, at two time points in development (early childhood and early adolescence), separated by eight years. In addition, this research sought to determine which biochemical markers were associated with neuropsychological impairments. A clinical practice survey was also undertaken to ascertain the current level of monitoring/treatment of tyrosine in this population. Thirteen children with early and continuously treated PKU were tested at mean age 5.9 years and again at mean age 13.95 years on several neuropsychological measures. Four children with hyperphenylalaninemia (a milder version of PKU) were also tested at both time points and provide a comparison group in analyses. Associations between neuropsychological function and biochemical markers were analysed. A between groups analysis in adolescence was also conducted (children with PKU compared to their siblings) on parent report measures of EF and mood. Minor EF impairments were evident in the PKU group by age 6 years and these persisted into adolescence. Life-long exposure to high phenylalanine:tyrosine ratio and/or low tyrosine independent of phenylalanine were significantly associated with EF impairments at both time points. Over half the children with PKU showed severe impairment on a visuospatial task, and this was associated only with concurrent levels of tyrosine in adolescence. Children with PKU also showed a statistically significant decline in a language comprehension task from 6 years to adolescence (going from normal to subnormal), this deficit was associated with lifetime levels of phenylalanine. In comparison, the four children with hyperphenylalaninemia demonstrated normal function at both time points, across all measures. No statistically significant differences were detected between children with PKU and their siblings on the parent report of EF and mood. However, depressive symptoms were significantly correlated with: EF; long term high phe:tyr exposure; and low tyrosine levels independent of phenylalanine. The practice survey of metabolic clinics from 12 countries indicated a high level of variability in terms of monitoring/treatment of tyrosine in this population. Whilst over 80% of clinics surveyed routinely monitored tyrosine levels in their child patients, 25% reported treatment strategies to increase tyrosine (and thereby lower the phenylalanine:tyrosine ratio) under a variety of patient presentation conditions. Overall, these studies have shown that EF impairments associated with PKU provide support for the dopamine-deficiency model. A language comprehension task showed a different trajectory, serving a timely reminder that non-EF functions also remain vulnerable in this population; and that normal function in childhood does not guarantee normal function by adolescence. Mood impairments were associated with EF impairments as well as long term measures of phenylalanine:tyrosine and/or tyrosine. The implications of this research for enhanced clinical guidelines are discussed given varied current practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine-detailed molecular marker for epidemiological analysis appears justified, the tarP and ORF663 genes also appear to be valuable markers of phylogenetic or biogeographic divisions at the C. pecorum intra-species level. This research has significant implications for future typing studies to understand the phylogeny, genetic diversity, and epidemiology of C. pecorum infections in the koala and other animal species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies demonstrated endogenous expression level of Sox2, Oct-4 and c-Myc is correlated with the pluripotency and successful induction of induced pluripotent stem cells (iPSCs). Periondontal ligament cells (PDLCs)have multi-lineage diferentiation capability and ability to maintain undifferentiated stage, which makes PDLCs a suitable cell source for tissue repair and regeneration. To elucidate the effect of in vitro culture condition on the stemness potential of PDLCs, we explored the cell growth, proliferation, cell cycle, and the expression of Sox2, Oct-4 and c-Myc in PDLCs from passage 1 to 7 with or without the addition of recombinant human BMP4(rhBMP4). Our results revealed that BMP-4 promoted cell growth and proliferation, arrested PDLCs in S phase of cell cycle and upregulated PI value. It was revealed that without the addition of rhBMP4, the expression of Sox2, Oct-4 and c-Myc in PDLCs only maintained nucleus location until passage 3, then lost nucleus location subsequently. The mRNA expression in PDLCs further confirmed that the level of Sox2 and Oct-4 peaked at passage 3, then decreased afterwards, whereas c-Myc maintained consistently upregulation along passages. after the treatment with rhBMP4, the expression of Sox2, Oct-4 and c-Myc in PDLCs maintained nucleus location even at passage 7 and the mRNA expression of Sox2 and Oct-4 significantly upregulated at passage 5 and 7. These results demonstrated that addition of rhBMP-4 in the culture media could improve the current culture condition for PDLCs to maintain in an undifferentiated stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interest in the relationship between inflammation and oxidative stress has increased dramatically in recent years, not only within the clinical setting but also in the fields of exercise biochemistry and immunology. Inflammation and oxidative stress share a common role in the etiology of a variety of chronic diseases. During exercise, inflammation and oxidative stress are linked via muscle metabolism and muscle damage. Because oxidative stress and inflammation have traditionally been associated with fatigue and impaired recovery from exercise, research has focused on nutritional strategies aimed at reducing these effects. In this review, we have evaluated the findings of studies involving antioxidant supplementation on alterations in markers of inflammation (e.g., cytokines, C-reactive protein and cortisol). This review focuses predominantly on the role of reactive oxygen and nitrogen species generated from muscle metabolism and muscle damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, we have analyzed the influence of factors such as the dose, timing, supplementation period and bioavailability of antioxidant nutrients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effects of an Ironman triathlon race on markers of muscle damage, inflammation and heat shock protein 70 (HSP70). Nine well-trained male triathletes (mean +/- SD age 34 +/- 5 years; VO(2peak) 66.4 ml kg(-1) min(-1)) participated in the 2004 Western Australia Ironman triathlon race (3.8 km swim, 180 km cycle, 42.2 km run). We assessed jump height, muscle strength and soreness, and collected venous blood samples 2 days before the race, within 30 min and 14-20 h after the race. Plasma samples were analysed for muscle proteins, acute phase proteins, cytokines, heat shock protein 70 (HSP70), and clinical biochemical variables related to dehydration, haemolysis, liver and renal functions. Muscular strength and jump height decreased significantly (P < 0.05) after the race, whereas muscle soreness and the plasma concentrations of muscle proteins increased. The cytokines interleukin (IL)-1 receptor antagonist, IL-6 and IL-10, and HSP70 increased markedly after the race, while IL-12p40 and granulocyte colony-stimulating factor (G-CSF) were also elevated. IL-4, IL-1beta and tumour necrosis factor-alpha did not change significantly, despite elevated C-reactive protein and serum amyloid protein A on the day after the race. Plasma creatinine, uric acid and total bilirubin concentrations and gamma-glutamyl transferase activity also changed after the race. In conclusion, despite evidence of muscle damage and an acute phase response after the race, the pro-inflammatory cytokine response was minimal and anti-inflammatory cytokines were induced. HSP70 is released into the circulation as a function of exercise duration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a common cause of neurological disability in young adults. The disease generally manifests in early to middle adulthood and causes various neurological deficits. Autoreactive T lymphocytes and their associated antigens have long been presumed important features of MS pathogenesis. The Protein tyrosine phosphatase receptor type C gene (PTPRC) encodes the T-cell receptor CD45. Variations within PTPRC have been previously associated with diseases of autoimmune origin such as type 1 diabetes mellitus and Graves' disease. We set out to investigate two variants within the PTPRC gene, C77G and C772T in subjects with MS and matched healthy controls to determine whether significant differences exist in these markers in an Australian population. We employed high resolution melt analysis (HRM) and restriction length polymorphism (RFLP) techniques to determine genotypic and allelic frequencies. Our study found no significant difference between frequencies for PTPRC C77G by either genotype (Χ2 = 0.65, P = 0.72) or allele (Χ2 = 0.48, P = 0.49). Similarly, we did not find evidence to suggest an association between PTPRC C772T by genotype (Χ2 = 1.06, P = 0.59) or allele (Χ2 = 0.20, P = 0.66). Linkage disequilibrium (LD) analysis showed strong linkage disequilibrium between the two tested markers (D' = 0.9970, SD = 0.0385). This study reveals no evidence to suggest that these markers are associated with MS in the tested Australian Caucasian population. Although the PTPRC gene has a significant role in regulating CD4+ and CD8+ autoreactive T-cells, interferon-beta responsiveness, and potentially other important processes, our study does not support a role for the two tested variants of this gene in MS susceptibility in the Australian population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the expression pattern of hypoxia-induced proteins identified as being involved in malignant progression of head-and-neck squamous cell carcinoma (HNSCC) and to determine their relationship to tumor pO 2 and prognosis. Methods and Materials: We performed immunohistochemical staining of hypoxia-induced proteins (carbonic anhydrase IX [CA IX], BNIP3L, connective tissue growth factor, osteopontin, ephrin A1, hypoxia inducible gene-2, dihydrofolate reductase, galectin-1, IκB kinase β, and lysyl oxidase) on tumor tissue arrays of 101 HNSCC patients with pretreatment pO 2 measurements. Analysis of variance and Fisher's exact tests were used to evaluate the relationship between marker expression, tumor pO 2, and CA IX staining. Cox proportional hazard model and log-rank tests were used to determine the relationship between markers and prognosis. Results: Osteopontin expression correlated with tumor pO 2 (Eppendorf measurements) (p = 0.04). However, there was a strong correlation between lysyl oxidase, ephrin A1, and galectin-1 and CA IX staining. These markers also predicted for cancer-specific survival and overall survival on univariate analysis. A hypoxia score of 0-5 was assigned to each patient, on the basis of the presence of strong staining for these markers, whereby a higher score signifies increased marker expression. On multivariate analysis, increasing hypoxia score was an independent prognostic factor for cancer-specific survival (p = 0.015) and was borderline significant for overall survival (p = 0.057) when adjusted for other independent predictors of outcomes (hemoglobin and age). Conclusions: We identified a panel of hypoxia-related tissue markers that correlates with treatment outcomes in HNSCC. Validation of these markers will be needed to determine their utility in identifying patients for hypoxia-targeted therapy. © 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both cyclooxygenase (COX)-2 and epidermal growth factor receptor (EGFR) are thought to play important roles in the pathogenesis of non-small cell lung cancer (NSCLC). A number of in vitro studies have postulated a link between EGFR activation and subsequent COX-2 upregulation. The relationship between these factors has not been established in patients with NSCLC. COX-2 and EGFR expression were studied in 172 NSCLC specimens using standard immunohistochemical techniques. Western blotting was used to determine COX-2 and EGFR levels in five NSCLC cell lines. The effect of treatment with EGF on COX-2 expression in A549 cells was assessed. Results: Both EGFR and COX-2 are overexpressed in NSCLC. The predominant pattern of COX-2 and EGFR staining was cytoplasmic. Membranous EGFR staining was seen in 23.3% of cases. There was no relationship between COX-2 and EGFR expression and survival or any clinicopathological features. No correlation was seen between EGFR expression and COX-2 expression in the immunohistochemical series or in the cell lines. Treatment with EGF did not upregulate COX-2 levels in A549 cells, either in serum free or serum-supplemented conditions. Conclusions: Although COX-2 and EGFR are over-expressed in NSCLC neither was of prognostic significance in this series of cases. There is no correlation between these two factors in either tumour samples or cell lines. Although these factors show no correlation in NSCLC, they remain potential, though independent targets for treatment. © 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first successful Agrobacterium-mediated transformation of Australian elite rice cultivars, Jarrah and Amaroo, using binary vectors with our improved promoters and selectable markers. Calli derived from mature embryos were used as target tissues. The binary vectors contained hph (encoding hygromycin resistance) or bar (encoding herbicide resistance) as the selectable marker gene and uidA (gus) or sgfpS65T as the reporter gene driven by different promoters. Use of Agrobacterium strain AGL1 carrying derivatives of an improved binary vector pWBVec8, wherein the CaMV35S driven hph gene is interrupted by the castor bean catalase 1 intron, produced a 4-fold higher number of independent transgenic lines compared to that produced with the use of strain EHA101 carrying the binary vector pIG121-Hm wherein the CaMV35S driven hph is intronless. The Ubiquitin promoter produced 30-fold higher β-glucuronidase (GUS) activity (derivatives of binary vector pWBVec8) in transgenic plants than the CaMV35S promoter (pIG121-Hm). The two modified SCSV promoters produced GUS activity comparable to that produced by the Ubiquitin promoter. Progeny analysis (R1) for hygromycin resistance and GUS activity with selected lines showed both Mendelian and non-Mendelian segregation. Lines showing very high levels of GUS activity in T0 showed a reduced level of GUS activity in their T1 progeny, while lines with moderate levels of GUS activity showed increased levels in T1 progeny. Stable heritable green fluorescent protein (GFP) expression was also observed in few transgenic plants produced with the binary vector pTO134 which had the CaMV35S promoter-driven selectable marker gene bar and a modified CaMV35S promoter-driven reporter gene sgfpS65T.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, we defined a new syndromic form of X-linked mental retardation in a 4-generation family with a unique clinical phenotype characterized by mild mental retardation, choreoathetosis, and abnormal behavior (MRXS10). Linkage analysis in this family revealed a candidate region of 13.4 Mb between markers DXS1201 and DXS991 on Xp11; therefore, mutation analysis was performed by direct sequencing in most of the 135 annotated genes located in the region. The gene (HADH2) encoding L-3-hydroxyacyl-CoA dehydrogenase II displayed a sequence alteration (c.574 C-->A; p.R192R) in all patients and carrier females that was absent in unaffected male family members and could not be found in 2,500 control X chromosomes, including in those of 500 healthy males. The silent C-->A substitution is located in exon 5 and was shown by western blot to reduce the amount of HADH2 protein by 60%-70% in the patient. Quantitative in vivo and in vitro expression studies revealed a ratio of splicing transcript amounts different from those normally seen in controls. Apparently, the reduced expression of the wild-type fragment, which results in the decreased protein expression, rather than the increased amount of aberrant splicing fragments of the HADH2 gene, is pathogenic. Our data therefore strongly suggest that reduced expression of the HADH2 protein causes MRXS10, a phenotype different from that caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency, which is a neurodegenerative disorder caused by missense mutations in this multifunctional protein.