501 resultados para product simulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: In the current climate of medical education, there is an ever-increasing demand for and emphasis on simulation as both a teaching and training tool. The objective of our study was to compare the realism and practicality of a number of artificial blood products that could be used for high-fidelity simulation. Method: A literature and internet search was performed and 15 artificial blood products were identified from a variety of sources. One product was excluded due to its potential toxicity risks. Five observers, blinded to the products, performed two assessments on each product using an evaluation tool with 14 predefined criteria including color, consistency, clotting, and staining potential to manikin skin and clothing. Each criterion was rated using a five-point Likert scale. The products were left for 24 hours, both refrigerated and at room temperature, and then reassessed. Statistical analysis was performed to identify the most suitable products, and both inter- and intra-rater variability were examined. Results: Three products scored consistently well with all five assessors, with one product in particular scoring well in almost every criterion. This highest-rated product had a mean rating of 3.6 of 5.0 (95% posterior Interval 3.4-3.7). Inter-rater variability was minor with average ratings varying from 3.0 to 3.4 between the highest and lowest scorer. Intrarater variability was negligible with good agreement between first and second rating as per weighted kappa scores (K = 0.67). Conclusion: The most realistic and practical form of artificial blood identified was a commercial product called KD151 Flowing Blood Syrup. It was found to be not only realistic in appearance but practical in terms of storage and stain removal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in data mining have provided techniques for automatically discovering underlying knowledge and extracting useful information from large volumes of data. Data mining offers tools for quick discovery of relationships, patterns and knowledge in large complex databases. Application of data mining to manufacturing is relatively limited mainly because of complexity of manufacturing data. Growing self organizing map (GSOM) algorithm has been proven to be an efficient algorithm to analyze unsupervised DNA data. However, it produced unsatisfactory clustering when used on some large manufacturing data. In this paper a data mining methodology has been proposed using a GSOM tool which was developed using a modified GSOM algorithm. The proposed method is used to generate clusters for good and faulty products from a manufacturing dataset. The clustering quality (CQ) measure proposed in the paper is used to evaluate the performance of the cluster maps. The paper also proposed an automatic identification of variables to find the most probable causative factor(s) that discriminate between good and faulty product by quickly examining the historical manufacturing data. The proposed method offers the manufacturers to smoothen the production flow and improve the quality of the products. Simulation results on small and large manufacturing data show the effectiveness of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time remote sales assistance is an underdeveloped component of online sales services. Solutions involving web page text chat, telephony and video support prove problematic when seeking to remotely guide customers in their sales processes, especially with configurations of physically complex artefacts. Recently, there has been great interest in the application of virtual worlds and augmented reality to create synthetic environments for remote sales of physical artefacts. However, there is a lack of analysis and development of appropriate software services to support these processes. We extend our previous work with the detailed design of configuration context services to support the management of an interactive sales session using augmented reality. We detail the context and configuration services required, presenting a novel data service streaming configuration information to the vendor for business analytics. We expect that a fully implemented configuration management service, based on our design, will improve the remote sales experience for both customers and vendors alike via analysis of the streamed information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the effects of adopting a pull system in assembly lines in contrast to a push system, simulation software called “ARENA” is used as a tool in order to present numerical results from both systems. Simulation scenarios are created to evaluate the effects of attributes changing in assembly systems, with influential factors including the change of manufacturing system (push system to pull system) and variation of demand. Moreover, pull system manufacturing consists of the addition attribute, which is the number of buffer storage. This paper will provide an analysis based on a previous case study, hence process time and workflow refer to the journal name “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study” [2]. The implementation of the pull system mechanism is to produce a system improvement in terms of the number of Work-In-Process (WIP), total time of products in the system, and the number of finished product inventory, while retaining the same throughput.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In various industrial and scientific fields, conceptual models are derived from real world problem spaces to understand and communicate containing entities and coherencies. Abstracted models mirror the common understanding and information demand of engineers, who apply conceptual models for performing their daily tasks. However, most standardized models in Process Management, Product Lifecycle Management and Enterprise Resource Planning lack of a scientific foundation for their notation. In collaboration scenarios with stakeholders from several disciplines, tailored conceptual models complicate communication processes, as a common understanding is not shared or implemented in specific models. To support direct communication between experts from several disciplines, a visual language is developed which allows a common visualization of discipline-specific conceptual models. For visual discrimination and to overcome visual complexity issues, conceptual models are arranged in a three-dimensional space. The visual language introduced here follows and extends established principles of Visual Language science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant based dried food products are popular commodities in global market where much research is focused to improve the products and processing techniques. In this regard, numerical modelling is highly applicable and in this work, a coupled meshfree particle-based two-dimensional (2-D) model was developed to simulate micro-scale deformations of plant cells during drying. Smoothed Particle Hydrodynamics (SPH) was used to model the viscous cell protoplasm (cell fluid) by approximating it to an incompressible Newtonian fluid. The visco-elastic characteristic of the cell wall was approximated to a Neo-Hookean solid material augmented with a viscous term and modelled with a Discrete Element Method (DEM). Compared to a previous work [H. C. P. Karunasena, W. Senadeera, Y. T. Gu and R. J. Brown, Appl. Math. Model., 2014], this study proposes three model improvements: linearly decreasing positive cell turgor pressure during drying, cell wall contraction forces and cell wall drying. The improvements made the model more comparable with experimental findings on dried cell morphology and geometric properties such as cell area, diameter, perimeter, roundness, elongation and compactness. This single cell model could be used as a building block for advanced tissue models which are highly applicable for product and process optimizations in Food Engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drying is a key processing techniques used in food engineering which demands continual developments on advanced analysis techniques in order to optimize the product and the process. In this regard, plant based materials are a frequent subject of interest where microstructural studies can provide a clearer understanding on the fundamental physical mechanisms involved. In this context, considering numerous challenges of using conventional numerical grid-based modelling techniques, a meshfree particle based model was developed to simulate extreme deformations of plant microstructure during drying. The proposed technique is based on a particle based meshfree method: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). A tissue model was developed by aggrading individual cells modelled with SPH-DEM coupled approach by initializing the cells as hexagons and aggregating them to form a tissue. The model also involves a middle lamella resembling real tissues. Using the model, different dried tissue states were simulated with different moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model is capable of simulating plant tissues at lower moisture contents which results in excessive shrinkage and cell wall wrinkling. Model predictions were compared with experimental findings and a fairly good agreement was observed both qualitatively and quantitatively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, dynamic modeling and simulation of the hydropurification reactor in a purified terephthalic acid production plant has been investigated by gray-box technique to evaluate the catalytic activity of palladium supported on carbon (0.5 wt.% Pd/C) catalyst. The reaction kinetics and catalyst deactivation trend have been modeled by employing artificial neural network (ANN). The network output has been incorporated with the reactor first principle model (FPM). The simulation results reveal that the gray-box model (FPM and ANN) is about 32 percent more accurate than FPM. The model demonstrates that the catalyst is deactivated after eleven months. Moreover, the catalyst lifetime decreases about two and half months in case of 7 percent increase of reactor feed flowrate. It is predicted that 10 percent enhancement of hydrogen flowrate promotes catalyst lifetime at the amount of one month. Additionally, the enhancement of 4-carboxybenzaldehyde concentration in the reactor feed improves CO and benzoic acid synthesis. CO is a poison to the catalyst, and benzoic acid might affect the product quality. The model can be applied into actual working plants to analyze the Pd/C catalyst efficient functioning and the catalytic reactor performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of the hydroxyl units of synthetic goethite and its dehydroxylated product hematite was characterized using a combination of Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) during the thermal transformation over a temperature range of 180-270 degrees C. Hematite was detected at temperatures above 200 degrees C by XRD while goethite was not observed above 230 degrees C. Five intense OH vibrations at 3212-3194, 1687-1674, 1643-1640, 888-884 and 800-798 cm(-1), and a H2O vibration at 3450-3445 cm(-1) were observed for goethite. The intensity of hydroxyl stretching and bending vibrations decreased with the extent of dehydroxylation of goethite. Infrared absorption bands clearly show the phase transformation between goethite and hematite: in particular. the migration of excess hydroxyl units from goethite to hematite. Two bands at 536-533 and 454-452 cm(-1) are the low wavenumber vibrations of Fe-O in the hematite structure. Band component analysis data of FTIR spectra support the fact that the hydroxyl units mainly affect the a plane in goethite and the equivalent c plane in hematite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a preliminary study on the dielectric properties and curing of three different types of epoxy resins mixed at various stichiometric mixture of hardener, flydust and aluminium powder under microwave energy. In this work, the curing process of thin layers of epoxy resins using microwave radiation was investigated as an alternative technique that can be implemented to develop a new rapid product development technique. In this study it was observed that the curing time and temperature were a function of the percentage of hardener and fillers presence in the epoxy resins. Initially dielectric properties of epoxy resins with hardener were measured which was directly correlated to the curing process in order to understand the properties of cured specimen. Tensile tests were conducted on the three different types of epoxy resins with hardener and fillers. Modifying dielectric properties of the mixtures a significant decrease in curing time was observed. In order to study the microstructural changes of cured specimen the morphology of the fracture surface was carried out by using scanning electron microscopy.