530 resultados para physics teaching
Resumo:
There is extensive uptake of ICT in the teaching of science but more evidence is needed on how ICT impacts on the learning practice and the learning outcomes at the classroom level. In this study, a physics website (Getsmart) was developed using the cognitive apprenticeship framework for students at a high school in Australia. This website was designed to enhance students’ knowledge of concepts in physics. Reflexive pedagogies were used in the delivery learning materials in a blended learning environment. The students in the treatment group accessed the website over a 10 week period. Pre and post-test results of the treatment (N= 48) and comparison group (N=32) were compared. The MANCOVA analysis showed that the web-based learning experience benefited the students in the treatment group. It not only impacted on the learning outcomes, but qualitative data from the students suggested that it had a positive impact on their attitudes towards studying physics in a blended environment.
Resumo:
In this chapter we review studies of the engagement of students in design projects that emphasise integration of technology practice and the enabling sciences, which include physics and mathematics. We give special attention to affective and conceptual outcomes from innovative interventions of design projects. This is important work because of growing international concern that demand for professionals with technological expertise is increasing rapidly, while the supply of students willing to undertake the rigors of study in the enabling sciences is proportionally reducing (e.g., Barringtion, 2006; Hannover & Kessels, 2004; Yurtseven, 2002). The net effect is that the shortage in qualified workers is having a detrimental effect upon economic and social potential in Westernised countries (e.g., Department of Education, Science and Training [DEST], 2003; National Numeracy Review Panel and National Numeracy Review Secretarial, 2007; Yurtseven, 2002). Interestingly, this trend is reversed in developing economies including China and India (Anderson & Gilbride, 2003).
The effects of implementing an innovative assessment program in senior school physics : a case study
Resumo:
Scientific visualisations such as computer-based animations and simulations are increasingly a feature of high school science instruction. Visualisations are adopted enthusiastically by teachers and embraced by students, and there is good evidence that they are popular and well received. There is limited evidence, however, of how effective they are in enabling students to learn key scientific concepts. This paper reports the results of a quantitative study conducted in Australian physics and chemistry classrooms. In general there was no statistically significant difference between teaching with and without visualisations, however there were intriguing differences around student sex and academic ability.
Resumo:
Background: Room ventilation is a key determinant of airborne disease transmission. Despite this, ventilation guidelines in hospitals are not founded on robust scientific evidence related to prevention of airborne transmission. Methods: We sought to assess the effect of ventilation rates on influenza, tuberculosis (TB) and rhinovirus infection risk within three distinct rooms in a major urban hospital; a Lung Function Laboratory, Emergency Department (ED) Negative-pressure Isolation Room and an Outpatient Consultation Room were investigated. Air exchange rate measurements were performed in each room using CO2 as a tracer. Gammaitoni and Nucci’s model was employed to estimate infection risk. Results: Current outdoor air exchange rates in the Lung Function Laboratory and ED Isolation Room limited infection risks to between 0.1 and 3.6%. Influenza risk for individuals entering an Outpatient Consultation Room after an infectious individual departed ranged from 3.6 to 20.7%, depending on the duration for which each person occupied the room. Conclusions: Given the absence of definitive ventilation guidelines for hospitals, air exchange measurements combined with modelling afford a useful means of assessing, on a case-by-case basis, the suitability of room ventilation at preventing airborne disease transmission.
Resumo:
A quantitative, quasi-experimental study of the effectiveness of computer-based scientific visualizations for concept learning on the part of Year 11 physics students (n=80) was conducted in six Queensland high school classrooms. Students’ gender and academic ability were also considered as factors in relation to the effectiveness of teaching with visualizations. Learning with visualizations was found to be equally effective as learning without them for all students, with no statistically significant difference in outcomes being observed for the group as a whole or on the academic ability dimension. Male students were found to learn significantly better with visualizations than without, while no such effect was observed for female students. This may give rise to some concern for the equity issues raised by introducing visualizations. Given that other research shows that students enjoy learning with visualizations and that their engagement with learning is enhanced, the finding that the learning outcomes are the same as for teaching without visualizations supports teachers’ use of visualizations.
Resumo:
This paper arises from our concern for the level of teaching of engineering drawing at tertiary institutions in Australia. Little attention is paid to teaching hand drawing and tolerancing. Teaching of engineering drawing is usually limited to computer-aided design (CAD) using AutoCAD or one of the solid-modelling packages. As a result, many engineering graduates have diffi culties in understanding how views are produced in different projection angles, are unable to produce engineering drawings of professional quality, or read engineering drawings, and unable to select fits and limits or surface roughness. In the Faculty of Built Environment and Engineering at the Queensland University of Technology new approaches to teaching engineering drawing have been introduced. In this paper the results of these innovative approaches are examined through surveys and other research methods.
Resumo:
Teachers often have difficulty implementing inquiry-based activities, leading to the arousal of negative emotions. In this multicase study of beginning physics teachers in Australia, we were interested in the extent to which their expectations were realized and how their classroom experiences while implementing extended experimental investigations (EEIs) produced emotional states that mediated their teaching practices. Against rhetoric of fear expressed by their senior colleagues, three of the four teachers were surprised by the positive outcomes from their supervision of EEIs for the first time. Two of these teachers experienced high intensity positive emotions in response to their students’ success. When student actions / outcomes did not meet their teachers’ expectations, frustration, anger, and disappointment were experienced by the teachers, as predicted by a sociological theory of human emotions (Turner, 2007). Over the course of the EEI projects, the teachers’ practices changed along with their emotional states and their students’ achievements. We account for similarities and differences in the teachers’ emotional experiences in terms of context, prior experience, and expectations. The findings from this study provide insights into effective supervision practices that can be used to inform new and experienced teachers alike.
Resumo:
Lending teachers for two-year periods is one of the ways in which Cuba has been able to collaborate with other countries in their efforts to improve educational planning and practice. My field research in 2001 in Jamaica (March and November) and in Namibia (December) enabled me to obtain information about how Cuban teachers are being utilized, and about the educational implications of this project. In Jamaica, I interviewed 15 Cuban teachers in several schools and one in the vocational institute, as well as the Cuban project supervisor in charge of the 51 Cuban teachers. I also talked with officials at the Jamaican Ministry of Education to obtain an idea of the developmental needs in the various subjects that the Cubans had been asked to teach. In Namibia I interviewed personnel in the National Sports Directorate and the Cuban manager in charge of the sports education project. The chapter draws on these interviews to build a picture of how the program of collaboration is organized, and considers its postcolonial significance, in theory and in practice, as an example of South-South collaboration. The chapter contributes to a multilevel style of comparative education analysis based on microlevel qualitative fieldwork within a framework that compares cross-cultural issues and national policies. The discussion of the educational situation of the host countries suggests why Cuban teachers can contribute to meeting curricular needs, particularly in the areas of the sciences, mathematics, Spanish, and sports. The friendly and joking remark of one of the Cuban teachers to school students in Jamaica: “You help me improve my English, I’ll teach you Physics!” highlights the reciprocal potential of these cooperation projects, discussed in several chapters of this book.
Resumo:
Dynamics is an essential core engineering subject and it is considered as one of the hardest subjects in the engineering discipline. Many students acknowledged that Dynamics is very hard to understand and comprehend the abstract concepts through traditional teaching methods with normal tutorials and assignments. In this study, we conducted an investigation on the application of visualization technique to help students learning the unit with the fundamental theory displayed in the physical space. The research was conducted based on the following five basic steps of Action Learning Cycle including: Identifying problem, Planning action, Implementing, Evaluating, and Reporting. Through our studies, we have concluded that visualization technique can definitely help students in learning and comprehending the abstract theories and concepts of Dynamics.
Resumo:
Institutional graduate capabilities and discipline threshold learning outcomes require science students to demonstrate ethical conduct and social responsibility. However, neither the teaching nor the assessment of these concepts is straightforward. Australian chemistry academics participated in a workshop in 2013 to discuss and develop teaching and assessment in these areas and this paper reports on the outcomes of that workshop. Controversial issues discussed included: How broad is the mandate of the teacher, how should the boundaries between personal values and ethics be drawn, and how can ethics be assessed without moral judgement? In this position paper, I argue for a deep engagement with ethics and social justice, achieved through case studies and assessed against criteria that require discussion and debate. Strategies to effectively assess science students’ understanding of ethics and social responsibility are detailed.
Resumo:
This study involves teaching engineering students concepts in lubrication engineering that are heavily dependent on mathematics. Excellent learning outcomes have been observed when assessment tasks are devised for a diversity of learning styles. Providing different pathways to knowledge reduces the probability that a single barrier halts progress towards the ultimate learning objective. The interdisciplinary nature of tribology can be used advantageously to tie together multiple elements of engineering to solve real physical problems—an approach that seems to benefit a majority of engineering students. To put this into practice, various assessment items were devised on the study of hydrodynamics, culminating in a project to provide a summative evaluation of the students’ learning achievement. A survey was also conducted to assess other aspects of students’ learning experiences under the headings: ‘perception of learning’ and ‘overall satisfaction’. High degrees of achievement and satisfaction were observed. An attempt has been made to identify the elements contributing to success so that they may be applied to other challenging concepts in engineering education.
Resumo:
A teaching laboratory experiment is described that uses Archimedes’ principle to precisely investigate the effect of global warming on the oceans. A large component of sea level rise is due to the increase in the volume of water due to the decrease in water density with increasing temperature. Water close to 0 °C is placed in a beaker and a glass marble hung from an electronic balance immersed in the water. As the water warms, the weight of the marble increases as the water is less buoyant due to the decrease in density. In the experiment performed in this paper a balance with a precision of 0.1 mg was used with a marble 40.0 cm3 and mass of 99.3 g, yielding water density measurements with an average error of -0.008 ± 0.011%.