608 resultados para pacs: simulation techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pile foundations transfer loads from superstructures to stronger sub soil. Their strength and stability can hence affect structural safety. This paper treats the response of reinforced concrete pile in saturated sand to a buried explosion. Fully coupled computer simulation techniques are used together with five different material models. Influence of reinforcement on pile response is investigated and important safety parameters of horizontal deformations and tensile stresses in the pile are evaluated. Results indicate that adequate longitudinal reinforcement and proper detailing of transverse reinforcement can reduce pile damage. Present findings can serve as a benchmark reference for future analysis and design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the fundamental motivations underlying computational cell biology is to gain insight into the complicated dynamical processes taking place, for example, on the plasma membrane or in the cytosol of a cell. These processes are often so complicated that purely temporal mathematical models cannot adequately capture the complex chemical kinetics and transport processes of, for example, proteins or vesicles. On the other hand, spatial models such as Monte Carlo approaches can have very large computational overheads. This chapter gives an overview of the state of the art in the development of stochastic simulation techniques for the spatial modelling of dynamic processes in a living cell.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Foot ulcers are a frequent reason for diabetes-related hospitalisation. Clinical training is known to have a beneficial impact on foot ulcer outcomes. Clinical training using simulation techniques has rarely been used in the management of diabetes-related foot complications or chronic wounds. Simulation can be defined as a device or environment that attempts to replicate the real world. The few non-web-based foot-related simulation courses have focused solely on training for a single skill or “part task” (for example, practicing ingrown toenail procedures on models). This pilot study aimed to primarily investigate the effect of a training program using multiple methods of simulation on participants’ clinical confidence in the management of foot ulcers. Methods: Sixteen podiatrists participated in a two-day Foot Ulcer Simulation Training (FUST) course. The course included pre-requisite web-based learning modules, practicing individual foot ulcer management part tasks (for example, debriding a model foot ulcer), and participating in replicated clinical consultation scenarios (for example, treating a standardised patient (actor) with a model foot ulcer). The primary outcome measure of the course was participants’ pre- and post completion of confidence surveys, using a five-point Likert scale (1 = Unacceptable-5 = Proficient). Participants’ knowledge, satisfaction and their perception of the relevance and fidelity (realism) of a range of course elements were also investigated. Parametric statistics were used to analyse the data. Pearson’s r was used for correlation, ANOVA for testing the differences between groups, and a paired-sample t-test to determine the significance between pre- and post-workshop scores. A minimum significance level of p < 0.05 was used. Results: An overall 42% improvement in clinical confidence was observed following completion of FUST (mean scores 3.10 compared to 4.40, p < 0.05). The lack of an overall significant change in knowledge scores reflected the participant populations’ high baseline knowledge and pre-requisite completion of web-based modules. Satisfaction, relevance and fidelity of all course elements were rated highly. Conclusions: This pilot study suggests simulation training programs can improve participants’ clinical confidence in the management of foot ulcers. The approach has the potential to enhance clinical training in diabetes-related foot complications and chronic wounds in general.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of global warming on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since all building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. Based on a review of the existing weather data generation models, this paper presents an effective method to generate approximate future hourly weather data suitable for the study of the impact of global warming. Depending on the level of information available for the prediction of future weather condition, it is shown that either the method of retaining to current level, constant offset method or diurnal modelling method may be used to generate the future hourly variation of an individual weather parameter. An example of the application of this method to the different global warming scenarios in Australia is presented. Since there is no reliable projection of possible change in air humidity, solar radiation or wind characters, as a first approximation, these parameters have been assumed to remain at the current level. A sensitivity test of their impact on the building energy performance shows that there is generally a good linear relationship between building cooling load and the changes of weather variables of solar radiation, relative humidity or wind speed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridge. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change before and after damage are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of proposed structure with six damage scenarios. It is concluded that the modal strain energy method is competent for application on multiple-girder composite bridge, as evidenced through the example treated in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of climate change on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since most of building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. In this paper, the methods used to prepare future weather data for the study of the impact of climate change are reviewed. The advantages and disadvantages of each method are discussed. The inherent relationship between these methods is also illustrated. Based on these discussions and the analysis of Australian historic climatic data, an effective framework and procedure to generate future hourly weather data is presented. It is shown that this method is not only able to deal with different levels of available information regarding the climate change, but also can retain the key characters of a “typical” year weather data for a desired period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Assessing the structural health state of urban infrastructure is crucial in terms of infrastructure sustainability. This chapter uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridges. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely, the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change, before and after damage, are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of a proposed structure with six damage scenarios. It is concluded that the modal strain energy method is capable of application to multiple-girder composite bridges, as evidenced through the example treated in this chapter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Frontal columns in buildings and columns in car parks are vulnerable to vehicular impacts. This paper treats the impact response of such concrete columns under vehicular loads and the use of polymer wrap to enhance their impact capacity. Comprehensive dynamic computer simulation techniques are used along with strain rate effects and hour glass control to evaluate the impact response. Results indicate the effectiveness of wraps in enhancing the impact capacity of these columns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased industrialisation has brought to the forefront the susceptibility of concrete columns in both buildings and bridges to vehicle impacts. Accurate vulnerability assessments are crucial in the design process due to possible catastrophic nature of the failures that can cause. This paper reports on research undertaken to investigate the impact capacity of the columns of low to medium raised building designed according to Australian Standards. Numerical simulation techniques were used in the process and validation was done by using experimental results published in the literature. The investigation thus far has confirmed that vulnerability of typical columns in five story buildings located in urban areas to medium velocity car impacts and hence these columns need to be re-designed (if possible) or retrofitted. In addition, accuracy of the simplified method presented in EN 1991 to quantify the impact damage was scrutinised. A simplified concept to assess the damage due to all collisions modes was introduced. The research information will be extended to generate a common data base to assess the vulnerability of columns in urban areas against new generation of vehicles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper treats the crush behaviour and energy absorption response of foam-filled conical tubes subjected to oblique impact loading. Dynamic computer simulation techniques validated by experimental testing are used to carry out a parametric study of such devices. The study aims at quantifying the energy absorption of empty and foam-filled conical tubes under oblique impact loading, for variations in the load angle and geometry parameters of the tube. It is evident that foam-filled conical tubes are preferable as impact energy absorbers due to their ability to withstand oblique impact loads as effectively as axial impact loads. Furthermore, it is found that the energy absorption capacity of filled tubes is better maintained compared to that of empty tubes as the load orientation increases. The primary outcome of this study is design information for the use of foam-filled conical tubes as energy absorbers where oblique impact loading is expected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamic computer simulation techniques are used to develop and apply a multi-criteria procedure, incorporating changes in natural frequencies, modal flexibility and the modal strain energy, for damage localisation in beams and plates. Numerically simulated modal data obtained through finite element analyses are used to develop algorithms based on changes of modal flexibility and modal strain energy before and after damage and used as the indices for assessment of the state of structural health. The proposed procedure is illustrated through its application to flexural members under different damage scenarios and the results confirm its feasibility for damage assessment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased industrialisation has brought to the forefront the susceptibility of concrete columns in both buildings and bridges to vehicle impacts. Accurate vulnerability assessments are crucial in the design process due to possible catastrophic nature of the failures that can cause. This chapter reports on research undertaken to investigate the impact capacity of the columns of low to medium raised building designed according to the Australian standards. Numerical simulation techniques were used in the process and validation was done by using experimental results published in the literature. The investigation thus far has confirmed that vulnerability of typical columns in five story buildings located in urban areas to medium velocity car impacts and hence these columns need to be re-designed or retrofitted. In addition, accuracy of the simplified method presented in EN 1991-1-7 to quantify the impact damage was scrutinised. A simplified concept to assess the damage due to all collisions modes was introduced. The research information will be extended to generate a common data base to assess the vulnerability of columns in urban areas against new generation of vehicles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Building insulation is often used to reduce the conduction heat transfer through building envelope. With a higher level of insulation (or a greater R-value), the less the conduction heat would transfer through building envelope. In this paper, using building computer simulation techniques, the effects of building insulation levels on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that depending on the types of buildings and the climates of buildings located, increasing the level of building insulation will not always bring benefits in energy saving and thermal comfort, particularly for internal-load dominated office buildings located in temperate/tropical climates. The possible implication of building insulation in face of global warming has also been examined. Compared with the influence of insulation on building thermal performance, the influence on building energy use is relatively small.