266 resultados para optimal route finding
Resumo:
This study considers the role and nature of co-thought gestures when students process map-based mathematics tasks. These gestures are typically spontaneously produced silent gestures which do not accompany speech and are represented by small movements of the hands or arms often directed toward an artefact. The study analysed 43 students (aged 10–12 years) over a 3-year period as they solved map tasks that required spatial reasoning. The map tasks were representative of those typically found in mathematics classrooms for this age group and required route finding and coordinate knowledge. The results indicated that co-thought gestures were used to navigate the problem space and monitor movements within the spatial challenges of the respective map tasks. Gesturing was most influential when students encountered unfamiliar tasks or when they found the tasks spatially demanding. From a teaching and learning perspective, explicit co-thought gesturing highlights cognitive challenges students are experiencing since students tended to not use gesturing in tasks where the spatial demands were low.
Resumo:
This study investigated a new performance indicator to assess climbing fluency (smoothness of the hip trajectory and orientation of a climber using normalized jerk coefficients) to explore effects of practice and hold design on performance. Eight experienced climbers completed four repetitions of two, 10-m high routes with similar difficulty levels, but varying in hold graspability (holds with one edge vs holds with two edges). An inertial measurement unit was attached to the hips of each climber to collect 3D acceleration and 3D orientation data to compute jerk coefficients. Results showed high correlations (r = .99, P < .05) between the normalized jerk coefficient of hip trajectory and orientation. Results showed higher normalized jerk coefficients for the route with two graspable edges, perhaps due to more complex route finding and action regulation behaviors. This effect decreased with practice. Jerk coefficient of hip trajectory and orientation could be a useful indicator of climbing fluency for coaches as its computation takes into account both spatial and temporal parameters (ie, changes in both climbing trajectory and time to travel this trajectory)
Resumo:
This paper reviews the main development of approaches to modelling urban public transit users’ route choice behaviour from 1960s to the present. The approaches reviewed include the early heuristic studies on finding the least cost transit route and all-or-nothing transit assignment, the bus common line problem and corresponding network representation methods, the disaggregate discrete choice models which are based on random utility maximization assumptions, the deterministic use equilibrium and stochastic user equilibrium transit assignment models, and the recent dynamic transit assignment models using either frequency or schedule based network formulation. In addition to reviewing past outcomes, this paper also gives an outlook into the possible future directions of modelling transit users’ route choice behaviour. Based on the comparison with the development of models for motorists’ route choice and traffic assignment problems in an urban road area, this paper points out that it is rewarding for transit route choice research to draw inspiration from the intellectual outcomes out of the road area. Particularly, in light of the recent advancement of modelling motorists’ complex road route choice behaviour, this paper advocates that the modelling practice of transit users’ route choice should further explore the complexities of the problem.
Resumo:
Public transport is one of the key promoters of sustainable urban transport. To encourage and increase public transport patronage it is important to investigate the route choice behaviours of urban public transit users. This chapter reviews the main developments of modelling urban public transit users’ route choice behaviours in a historical perspective, from the 1960s to the present time. The approaches re- viewed for this study include the early heuristic studies on finding the least-cost transit route and all-or- nothing transit assignment, the bus common lines problem, the disaggregate discrete choice models, the deterministic and stochastic user equilibrium transit assignment models, and the recent dynamic transit assignment models. This chapter also provides an outlook for the future directions of modelling transit users’ route choice behaviours. Through the comparison with the development of models for motorists’ route choice and traffic assignment problems, this chapter advocates that transit route choice research should draw inspiration from the research outcomes from the road area, and that the modelling practice of transit users’ route choice should further explore the behavioural complexities.
Resumo:
We consider the problem of how to efficiently and safely design dose finding studies. Both current and novel utility functions are explored using Bayesian adaptive design methodology for the estimation of a maximum tolerated dose (MTD). In particular, we explore widely adopted approaches such as the continual reassessment method and minimizing the variance of the estimate of an MTD. New utility functions are constructed in the Bayesian framework and are evaluated against current approaches. To reduce computing time, importance sampling is implemented to re-weight posterior samples thus avoiding the need to draw samples using Markov chain Monte Carlo techniques. Further, as such studies are generally first-in-man, the safety of patients is paramount. We therefore explore methods for the incorporation of safety considerations into utility functions to ensure that only safe and well-predicted doses are administered. The amalgamation of Bayesian methodology, adaptive design and compound utility functions is termed adaptive Bayesian compound design (ABCD). The performance of this amalgamation of methodology is investigated via the simulation of dose finding studies. The paper concludes with a discussion of results and extensions that could be included into our approach.
Resumo:
An iterative based strategy is proposed for finding the optimal rating and location of fixed and switched capacitors in distribution networks. The substation Load Tap Changer tap is also set during this procedure. A Modified Discrete Particle Swarm Optimization is employed in the proposed strategy. The objective function is composed of the distribution line loss cost and the capacitors investment cost. The line loss is calculated using estimation of the load duration curve to multiple levels. The constraints are the bus voltage and the feeder current which should be maintained within their standard range. For validation of the proposed method, two case studies are tested. The first case study is the semi-urban 37-bus distribution system which is connected at bus 2 of the Roy Billinton Test System which is located in the secondary side of a 33/11 kV distribution substation. The second case is a 33 kV distribution network based on the modification of the 18-bus IEEE distribution system. The results are compared with prior publications to illustrate the accuracy of the proposed strategy.
Resumo:
Trees are capable of portraying the semi-structured data which is common in web domain. Finding similarities between trees is mandatory for several applications that deal with semi-structured data. Existing similarity methods examine a pair of trees by comparing through nodes and paths of two trees, and find the similarity between them. However, these methods provide unfavorable results for unordered tree data and result in yielding NP-hard or MAX-SNP hard complexity. In this paper, we present a novel method that encodes a tree with an optimal traversing approach first, and then, utilizes it to model the tree with its equivalent matrix representation for finding similarity between unordered trees efficiently. Empirical analysis shows that the proposed method is able to achieve high accuracy even on the large data sets.
Resumo:
We address the problem of finite horizon optimal control of discrete-time linear systems with input constraints and uncertainty. The uncertainty for the problem analysed is related to incomplete state information (output feedback) and stochastic disturbances. We analyse the complexities associated with finding optimal solutions. We also consider two suboptimal strategies that could be employed for larger optimization horizons.
Resumo:
In this paper we analyse properties of the message expansion algorithm of SHA-1 and describe a method of finding differential patterns that may be used to attack reduced versions of SHA-1. We show that the problem of finding optimal differential patterns for SHA-1 is equivalent to the problem of finding minimal weight codeword in a large linear code. Finally, we present a number of patterns of different lengths suitable for finding collisions and near-collisions and discuss some bounds on minimal weights of them.
Resumo:
A decision-theoretic framework is proposed for designing sequential dose-finding trials with multiple outcomes. The optimal strategy is solvable theoretically via backward induction. However, for dose-finding studies involving k doses, the computational complexity is the same as the bandit problem with k-dependent arms, which is computationally prohibitive. We therefore provide two computationally compromised strategies, which is of practical interest as the computational complexity is greatly reduced: one is closely related to the continual reassessment method (CRM), and the other improves CRM and approximates to the optimal strategy better. In particular, we present the framework for phase I/II trials with multiple outcomes. Applications to a pediatric HIV trial and a cancer chemotherapy trial are given to illustrate the proposed approach. Simulation results for the two trials show that the computationally compromised strategy can perform well and appear to be ethical for allocating patients. The proposed framework can provide better approximation to the optimal strategy if more extensive computing is available.
Resumo:
A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.