230 resultados para octanol-air partition coefficient
Resumo:
Recent data highlighted the association between penetration of antiretrovirals in the central nervous system (CNS) and neurocognitive impairment in HIVpositive patients. Existing antiretrovirals have been ranked according to a score of neuropenetration, which was shown to be a predictor of anti-HIVactivity in the CNS and improvement of neurocognitive disorders [1]. Main factors affecting drug penetration are known to be protein binding, lipophilicity and molecular weight [2]. Moreover, active translation by membrane transporters (such as p-glycoprotein) could be a key mechanism of passage [3]. The use of raltegravir (RGV), a novel antiretroviral drug targeted to inhibit the HIV preintegrase complex, is increasing worldwide due to its efficacy and tolerability. However, penetration of RGV in the CNS has not been yet elucidated. In fact, prediction of RGV neuropenetration according to molecular characteristics is controversial. Intermediate protein binding (83%) and large volume of distribution (273 l) could suggest a high distribution beyond extracellular spaces [4]. On the contrary, low lipophilicity (oil/water partition coefficient at pH 7.4 of 2.80) and intermediate molecular weight (482.51 Da) suggest a limited diffusion. Furthermore, in-vitro studies suggest that RGV is substrate of p-glycoprotein, although this efflux pump has not been identified to significantly affect plasma pharmacokinetics [5]. In any case, no data concerning RGV passage into cerebrospinal fluid of animals or humans have yet been published.
Resumo:
The fate and transport of three herbicides commonly used in rice production in Japan were compared using two water management practices. The herbicides were simetryn, thiobencarb and mefenacet. The first management practice was an intermittent irrigation scheme using an automatic irrigation system (AI) with a high drainage gate and the second one was a continuous irrigation and overflow drainage scheme (CI) in experimental paddy fields. Dissipation of the herbicides appeared to follow first order kinetics with the half-lives (DT50) of 1.6-3.4 days and the DT90 (90% dissipation) of 7.4-9.8 days. The AI scheme had little drainage even during large rainfall events thus resulting in losses of less than 4% of each applied herbicide through runoff. Meanwhile the CI scheme resulted in losses of about 37%, 12% and 35% of the applied masses of simetryn, thiobencarb and mefenacet, respectively. The intermittent irrigation scheme using an automatic irrigation system with a high drainage gate saved irrigation water and prevented herbicide runoff whereas the continuous irrigation and overflow scheme resulted in significant losses of water as well as the herbicides. Maintaining the excess water storage is important for preventing paddy water runoff during significant rainfall events. The organic carbon partition coefficient Koc seems to be a strong indicator of the aquatic fate of the herbicide as compared to the water solubility (SW). However, further investigations are required to understand the relation between Koc and the agricultural practices upon the pesticide fate and transport. An extension of the water holding period up to 10 days after herbicide application based on the DT90 from the currently specified period of 3-4 days in Japan is recommended to be a good agricultural practice for controlling the herbicide runoff from paddy fields. Also, the best water management practice, which can be recommended for use during the water holding period, is the intermittent irrigation scheme using an automatic irrigation system with a high drainage gate. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Numerical investigation is carried out for natural convection heat transfer in an isosceles triangular enclosure partitioned in the centre by a vertical wall with infinite conductivity. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. As a result, heat is transferred between both sides of the enclosure through the conducting vertical wall with natural convection boundary layers forming adjacent to the middle partition and two inclined surfaces. The Finite Volume based software, Ansys 14.5 (Fluent) is used for the numerical simulations. The numerical results are obtained for different values of aspect ratio, A (0.2, 0.5 and 1.0) and Rayleigh number, Ra (10^5 <= Ra <= 10^8) for a fixed Prandtl number, Pr = 0.72 of air. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes several distinct stages including an initial stage, a transitional stage and a steady stage. Time dependent features of the coupled thermal boundary layers as well as the overall natural convection flow in the partitioned enclosure have been discussed in this study.
Resumo:
A single air bubble rising in xanthan gum crystal
suspension has been studied experimentally. The
suspension was made by different concentrations of
xanthan gum solutions with 0.23 mm polystyrene crystal
particles. Drag co-efficient data and a new correlation of
drag coefficient is presented for spherical and nonspherical
bubbles in non-Newtonian crystal suspension.
The correlation is developed in terms of the Reynolds
number, Re and the bubble shape factor, � (the ratio
between the surface equivalent sphere diameter to the
volume equivalent sphere diameter). The experimental
drag coefficient was found to be consistent with this new
predicted correlation and published data over the ranges,
0.1
Resumo:
Windows are one of the most significant elements in the design of buildings. Whether there are small punched openings in the facade or a completely glazed curtain wall, windows are usually a dominant feature of the building's exterior appearance. From the energy use perspective, windows may also be regarded as thermal holes for a building. Therefore, window design and selection must take both aesthetics and serviceability into consideration. In this paper, using building computer simulation techniques, the effects of glass types on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that a glass type with lower shading coefficient will have a lower building cooling load and total energy use. Through the comparison of results between current and future weather scenarios, it is identified that the pattern found from the current weather scenario would also exist in the future weather scenario, although the scale of change would become smaller. The possible implication of glazing selection in face of global warming is also examined. It is found that compared with its influence on building thermal performance, its influence on the building energy use is relatively small or insignificant.
Resumo:
The objective of this research was to investigate the effect of suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric DLC (Dynamic Load Coefficient), is generally in accordance with the load-sharing metric - DLSC (Dynamic Load Sharing Coefficient). When the static height or static pressure increases, the DLSC optimization ratio declines monotonically. The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
The objective of this research was to investigate the effects of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of driving conditions and suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric-DLC (dynamic load coefficient) is not always in accordance with the load-sharing metric-DLSC (dynamic load-sharing coefficient). The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. When the vehicle load reduces, or the static pressure increases, the DLSC optimization ratio declines monotonically. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
The effects of suspension parameters and driving conditions on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer are investigated in this study. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspensions is formulated based on fluid mechanics and thermodynamics and validated through test results. The effects of road surface conditions, driving speeds, air line inside diameter and connector inside diameter on dynamic load-sharing capability of the semi-trailer were analyzed in terms of load-sharing criteria. Simulation results indicate that, when larger air lines and connectors are employed, the DLSC (Dynamic Load-Sharing Coefficient) optimization ratio reaches its peak value when the road roughness is medium. The optimization ratio fluctuates in a complex manner as driving speed increases. The results also indicate that if the air line inside diameter is always assumed to be larger than the connector inside diameter, the influence of air line inside diameter on load-sharing is more significant than that of the connector inside diameter. The proposed approach can be used for further study of the influence of additional factors (such as vehicle load, static absolute air pressure and static height of air spring) on load-sharing and the control methods for multi-axle air suspensions with longitudinal air line.
Resumo:
Corona discharge is responsible for the flux of small ions from overhead power lines, and is capable of modifying the ambient electrical environment, such as the air ion concentrations at ground level. Once produced, small ions quickly attach to aerosol particles in the air, producing ‘large ions’, approximately 1 nm to 1 µm in diameter. However, very few studies have measured air ion concentrations directly near high voltage transmission lines. The present study involved the simultaneously measurement of small ion concentration and net large ion concentration using air ion counters and an aerosol electrometer at four power line sites. Both positive and negative small ion concentration (<1.6nm), net large ion concentration (2nm-5μm) and particle number concentration (10nm-2μm) were measured using air ion counters and an aerosol electrometer at four power line sites. Measurements at sites 1 and 2 were conducted at both upwind and downwind sides. The results showed that total ion concentrations on the downwind side were 3-5 times higher than on the upwind side, while particle number concentrations did not show a significant difference. This result also shows that a large number of ions were emitted from the power lines at sites 1 and 2. Furthermore, both positive and negative ions were observed at different power line sites. Dominant positive ions were observed at site 1, with a concentration of 4.4 x 103 ions cm-3, which was 10 times higher than on the upwind side. Contrary to site 1, sites 2 to 4 showed negative ion emissions, with concentrations of -1.2 x 103, -460 and -410 ions cm-3, respectively. These values were higher than the background urban negative ion concentration of 400 cm-3. At site 1 and site 2, the net ion concentration and net particle charge concentration on downwind side of the lines showed same polarities. Further investigations were also conducted into the correlation between net ion concentration and net charge particle concentration 20 m downwind of the power lines at site 2. The two parameters showed a correlation coefficient of 0.72, indicating that a substantial number of ions could attach to particles and affect the particle charge status within a short distance from the source.
Resumo:
Desalination is considered one of the most suitable areas for the utilization of solar energy, as there are many places in the world where abundant supply of solar energy is available and also there is a great demand for fresh water. An integrated solar heat pump desalination system has been developed at the National University of Singapore. The system also offers the opportunity of water heating and drying utilizing solar, ambient energy and waste heat from air conditioning system, which is conventionally dumped into the environment causing global warming. Desalination is carried out by making use of a single effect of Multi-Effect Distillation (MED) system. Within the desalination chamber, both fl ashing and evaporation of saline water take place. The maximum Coefficient of Performance (COP) of the heat pump system was around 5.8. In the integrated system, the maximum fresh water production rate was 9.6 l h−1 and a Performance Ratio (PR) of 1.2. For only desalination, the system has the potential to produce a maximum of 30 l h−1 of fresh water.
Resumo:
The stable free radical 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO) has proved to be very suitable for use as a spin probe for a number of applications. Because it is soluble mainly in non-polar liquids, there is a need for new derivatives that can be used in a variety of environments. This has been done by introducing substituents in the 5-position of the aromatic ring, namely carboxyl (CTMIO), trimethylamino (TMTMIOI) and sodium sulphonate (NaTMIOS). An accurate ESR method was developed for the measurement of partition coefficients in n-octanol–water. For comparison purposes the method was also applied to some Tempo derivatives. The effect of temperature on the rotational correlation times and the nitrogen-14 hyperfine coupling constant of some of the spin probes was investigated. There is evidence for dimerization of CTMIO to form a biradical