390 resultados para neural modeling
Resumo:
This study employs BP neural network to simulate the development of Chinese private passenger cars. Considering the uncertain and complex environment for the development of private passenger cars, indicators of economy, population, price, infrastructure, income, energy and some other fields which have major impacts on it are selected at first. The network is proved to be operable to simulate the progress of chinese private passenger cars after modeling, training and generalization test. Based on the BP neural network model, sensitivity analysis of each indicator is carried on and shows that the sensitivity coefficients of fuel price change suddenly. This special phenomenon reveals that the development of Chinese private passenger cars may be seriously affected by the recent high fuel price. This finding is also consistent with facts and figures
Resumo:
A magneto-rheological (MR) fluid damper is a semi-active control device that has recently begun to receive more attention in the vibration control community. However, the inherent nonlinear nature of the MR fluid damper makes it challenging to use this device to achieve high damping control system performance. Therefore the development of an accurate modeling method for a MR fluid damper is necessary to take advantage of its unique characteristics. Our goal was to develop an alternative method for modeling a MR fluid damper by using a self tuning fuzzy (STF) method based on neural technique. The behavior of the researched damper is directly estimated through a fuzzy mapping system. In order to improve the accuracy of the STF model, a back propagation and a gradient descent method are used to train online the fuzzy parameters to minimize the model error function. A series of simulations had been done to validate the effectiveness of the suggested modeling method when compared with the data measured from experiments on a test rig with a researched MR fluid damper. Finally, modeling results show that the proposed STF interference system trained online by using neural technique could describe well the behavior of the MR fluid damper without need of calculation time for generating the model parameters.
Resumo:
Over the past few decades, biodiesel produced from oilseed crops and animal fat is receiving much attention as a renewable and sustainable alternative for automobile engine fuels, and particularly petroleum diesel. However, current biodiesel production is heavily dependent on edible oil feedstocks which are unlikely to be sustainable in the longer term due to the rising food prices and the concerns about automobile engine durability. Therefore, there is an urgent need for researchers to identify and develop sustainable biodiesel feedstocks which overcome the disadvantages of current ones. On the other hand, artificial neural network (ANN) modeling has been successfully used in recent years to gain new knowledge in various disciplines. The main goal of this article is to review recent literatures and assess the state of the art on the use of ANN as a modeling tool for future generation biodiesel feedstocks. Biodiesel feedstocks, production processes, chemical compositions, standards, physio-chemical properties and in-use performance are discussed. Limitations of current biodiesel feedstocks over future generation biodiesel feedstock have been identified. The application of ANN in modeling key biodiesel quality parameters and combustion performance in automobile engines is also discussed. This review has determined that ANN modeling has a high potential to contribute to the development of renewable energy systems by accelerating biodiesel research.
Resumo:
In this paper, dynamic modeling and simulation of the hydropurification reactor in a purified terephthalic acid production plant has been investigated by gray-box technique to evaluate the catalytic activity of palladium supported on carbon (0.5 wt.% Pd/C) catalyst. The reaction kinetics and catalyst deactivation trend have been modeled by employing artificial neural network (ANN). The network output has been incorporated with the reactor first principle model (FPM). The simulation results reveal that the gray-box model (FPM and ANN) is about 32 percent more accurate than FPM. The model demonstrates that the catalyst is deactivated after eleven months. Moreover, the catalyst lifetime decreases about two and half months in case of 7 percent increase of reactor feed flowrate. It is predicted that 10 percent enhancement of hydrogen flowrate promotes catalyst lifetime at the amount of one month. Additionally, the enhancement of 4-carboxybenzaldehyde concentration in the reactor feed improves CO and benzoic acid synthesis. CO is a poison to the catalyst, and benzoic acid might affect the product quality. The model can be applied into actual working plants to analyze the Pd/C catalyst efficient functioning and the catalytic reactor performance.