583 resultados para nano-wall-structure


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A hybrid nano-urchin structure consisting of spherical onion-like carbon and MnO2 nanosheets is synthesized by a facile and environmentally-friendly hydrothermal method. Lithium-ion batteries incorporating the hybrid nano-urchin anode exhibit reversible lithium storage with superior specific capacity, enhanced rate capability, stable cycling performance, and nearly 100% Coulombic efficiency. These results demonstrate the effectiveness of designing hybrid nano-architectures with uniform and isotropic structure, high loading of electrochemically-active materials, and good conductivity for the dramatic improvement of lithium storage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research in structural dynamics has received considerable attention due to problems associated with emerging slender structures, increased vulnerability of structures to random loads and aging infrastructure. This paper briefly describes some such research carried out on i) dynamics of composite floor structure, ii) dynamics of cable supported footbridge, iii) seismic mitigation of frame-shear wall structure using passive dampers and iv) development of a damage assessment model for use in structural health modelling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A rapid electrochemical method based on using a clean hydrogen-bubble template to form a bimetallic porous honeycomb Cu/Pd structure has been investigated. The addition of palladium salt to a copper-plating bath under conditions of vigorous hydrogen evolution was found to influence the pore size and bulk concentration of copper and palladium in the honeycomb bimetallic structure. The surface was characterised by X-ray photoelectron spectroscopy, which revealed that the surface of honeycomb Cu/Pd was found to be rich with a Cu/Pd alloy. The inclusion of palladium in the bimetallic structure not only influenced the pore size, but also modified the dendritic nature of the internal wall structure of the parent copper material into small nanometre-sized crystallites. The chemical composition of the bimetallic structure and substantial morphology changes were found to significantly influence the surface-enhanced Raman spectroscopic response for immobilised rhodamine B and the hydrogen-evolution reaction. The ability to create free-standing films of this honeycomb material may also have many advantages in the areas of gas- and liquid-phase heterogeneous catalysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work the electrochemical formation of porous Cu/Ag materials is reported via the simple and quick method of hydrogen bubble templating. The bulk and surface composition ratio between Ag and Cu was varied in a systematic manner and was readily controlled by the concentration of precursor metal salts in the electrolyte. The incorporation of Ag within the Cu scaffold only affected the formation of well-defined pores at high Ag loading whereas the internal pore wall structure gradually transformed from dendritic to cube like and finally needle like structures, which was due to the concomitant formation of Cu2O within the structure. The materials were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Their surface properties were further investigated by surface enhanced Raman spectroscopy (SERS) and electrochemically probed by recording the hydrogen evolution reaction (HER) which is highly sensitive to the nature of the surface. The effect of surface composition was then investigated for its influence on two catalytic reactions namely the reduction of ferricyanide ions with thiosulphate ions and the reduction of 4-nitrophenol with NaBH4 in aqueous solution where it was found that the presence of Ag had a beneficial effect in both cases but more so in the case of nitrophenol reduction. It is believed that this material may have many more potential applications in the area of catalysis, electrocatalysis and photocatalysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2)-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A pulsed wall jet has been used to simulate the gust front of a thunderstorm downburst. Flow visualization, wind speed and surface pressure measurements were obtained. The characteristics of the hypothesized ring vortex of a full-scale downburst were reproduced at a scale estimated to be 1:3000.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A three-component fluid model for a dusty plasma-sheath in an oblique magnetic field is presented. The study is carried out for the conditions when the thermophoretic force associated with the electron temperature gradient is one of the most important forces affecting dust grains in the sheath. It is shown that the sheath properties (the sheath size, the electron, ion and dust particle densities and velocities, the electric field potential, and the forces affecting the dust particles) are functions of the neutral gas pressure and ion temperature, the dust size, the dust material density, and the electron temperature gradient. Effects of plasma-dust collisions on the sheath structure are studied. It is shown that an increase in the forces pushing dust particles to the wall is accompanied by a decrease in the sheath width. The results of this work are particularly relevant to low-temperature plasma-enabled technologies, where effective control of nano- and microsized particles near solid or liquid surfaces is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SEM observations of the aqueous suspensions of kaolinite from Birdwood (South Australia) and Georgia (USA) show noticeable differences in number of physical behaviour which has been explained by different microstructure constitution.. Birdwood kaolinite dispersion gels are observed at very low solid loadings in comparison with Georgia KGa-1 kaolinite dispersions which remain fluid at higher solids loading. To explain this behaviour, the specific particle interactions of Birdwood kaolinite, different from interaction in Georgia kaolinite have been proposed. These interactions may be brought about by the presence of nano-bubbles on clay crystal edges and may force clay particles to aggregate by bubble coalescence. This explains the predominance of stair step edge-edge like (EE) contacts in suspension of Birdwood kaolinite. Such EE linked particles build long strings that form a spacious cell structure. Hydrocarbon contamination of colloidal kaolinite particles and low aspect ratio are discussed as possible explanations of this unusual behaviour of Birdwood kaolinite. In Georgia KGa-1 kaolinite dispersions instead of EE contact between platelets displayed in Birdwood kaolinite, most particles have edge to face (EF) contacts building a cardhouse structure. Such an arrangement is much less voluminous in comparison with the Birdwood kaolinite cellular honeycomb structure observed previously in smectite aqueous suspensions. Such structural characteristics of KGa-1 kaolinite particles enable higher solid volume fractions pulps to form before significantly networked gel consistency is attained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As Brisbane grows, it is rapidly becoming akin to any other city in the world with its typical stark grey concrete buildings rather than being characterized by its subtropical element of abundant green vegetation. Living Walls can play a vital role in restoring the loss of this distinct local element of a subtropical city. This paper will start by giving an overview of the traditional methods of greening subtropical cities with the use of urban parks and street trees. Then, by examining a recent heat imaging map of Brisbane, the effect of green cover with the built environment will be shown. With this information from a macro level, this paper will proceed to examine a typical urban block within the Central Business District (CBD) to demonstrate urban densification in relation to greenery in the city. Then, this paper will introduce the new technology where Living Walls have the untapped potential of effectively greening a city where land is scarce and given over to high density development. Living Walls incorporated into building design does not only enhance the subtropical lifestyle that is being lost in modern cities but is also an effective means for addressing climate change. This paper will serve as a preliminary investigation into the effects of incorporating Living Walls into cities. By growing a Living Wall onto buildings, we can be part of an effective design solution for countering global warming and at the same time, Living Walls can return local character to subtropical cities, thereby greening the city as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological responses to environmental stress are increasingly well studied in scleractinian corals. This work reports a new stress-related skeletal structure we term clypeotheca. Clypeotheca was observed in several livecollected common reef-building coral genera and a two to three kya subfossil specimen from Heron Reef, Great Barrier Reef and consists of an epitheca-like skeletal wall that seals over the surface of parts of the corallum in areas of stress or damage. It appears to form from a coordinated process wherein neighboring polyps and adjoining coenosarc seal themselves off from the surrounding environment as they contract and die. Clypeotheca forms from inward skeletal centripetal growth at the edges of corallites and by the merging of flange-like outgrowths that surround individual spines over the surface of the coenosteum. Microstructurally, the merged flanges are similar to upsidedown dissepiments and true epitheca. Clypeotheca is interpreted primarily as a response to stress that may help protect the colony from invasion of unhealthy tissues by parasites or disease by retracting tissues in areas that have become unhealthy for the polyps. Identification of skeletal responses of corals to environmental stress may enable the frequency of certain types of environmental stress to be documented in past environments. Such data may be important for understanding the nature of reef dynamics through intervals of climate change and for monitoring the effects of possible anthropogenic stress in modern coral reef habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research on particle size distributions and particle concentrations near a busy road cannot be explained by the conventional mechanisms for particle evolution of combustion aerosols. Specifically they appear to be inadequate to explain the experimental observations of particle transformation and the evolution of the total number concentration. This resulted in the development of a new mechanism based on their thermal fragmentation, for the evolution of combustion aerosol nano-particles. A complex and comprehensive pattern of evolution of combustion aerosols, involving particle fragmentation, was then proposed and justified. In that model it was suggested that thermal fragmentation occurs in aggregates of primary particles each of which contains a solid graphite/carbon core surrounded by volatile molecules bonded to the core by strong covalent bonds. Due to the presence of strong covalent bonds between the core and the volatile (frill) molecules, such primary composite particles can be regarded as solid, despite the presence of significant (possibly, dominant) volatile component. Fragmentation occurs when weak van der Waals forces between such primary particles are overcome by their thermal (Brownian) motion. In this work, the accepted concept of thermal fragmentation is advanced to determine whether fragmentation is likely in liquid composite nano-particles. It has been demonstrated that at least at some stages of evolution, combustion aerosols contain a large number of composite liquid particles containing presumably several components such as water, oil, volatile compounds, and minerals. It is possible that such composite liquid particles may also experience thermal fragmentation and thus contribute to, for example, the evolution of the total number concentration as a function of distance from the source. Therefore, the aim of this project is to examine theoretically the possibility of thermal fragmentation of composite liquid nano-particles consisting of immiscible liquid v components. The specific focus is on ternary systems which include two immiscible liquid droplets surrounded by another medium (e.g., air). The analysis shows that three different structures are possible, the complete encapsulation of one liquid by the other, partial encapsulation of the two liquids in a composite particle, and the two droplets separated from each other. The probability of thermal fragmentation of two coagulated liquid droplets is discussed and examined for different volumes of the immiscible fluids in a composite liquid particle and their surface and interfacial tensions through the determination of the Gibbs free energy difference between the coagulated and fragmented states, and comparison of this energy difference with the typical thermal energy kT. The analysis reveals that fragmentation was found to be much more likely for a partially encapsulated particle than a completely encapsulated particle. In particular, it was found that thermal fragmentation was much more likely when the volume ratio of the two liquid droplets that constitute the composite particle are very different. Conversely, when the two liquid droplets are of similar volumes, the probability of thermal fragmentation is small. It is also demonstrated that the Gibbs free energy difference between the coagulated and fragmented states is not the only important factor determining the probability of thermal fragmentation of composite liquid particles. The second essential factor is the actual structure of the composite particle. It is shown that the probability of thermal fragmentation is also strongly dependent on the distance that each of the liquid droplets should travel to reach the fragmented state. In particular, if this distance is larger than the mean free path for the considered droplets in the air, the probability of thermal fragmentation should be negligible. In particular, it follows form here that fragmentation of the composite particle in the state with complete encapsulation is highly unlikely because of the larger distance that the two droplets must travel in order to separate. The analysis of composite liquid particles with the interfacial parameters that are expected in combustion aerosols demonstrates that thermal fragmentation of these vi particles may occur, and this mechanism may play a role in the evolution of combustion aerosols. Conditions for thermal fragmentation to play a significant role (for aerosol particles other than those from motor vehicle exhaust) are determined and examined theoretically. Conditions for spontaneous transformation between the states of composite particles with complete and partial encapsulation are also examined, demonstrating the possibility of such transformation in combustion aerosols. Indeed it was shown that for some typical components found in aerosols that transformation could take place on time scales less than 20 s. The analysis showed that factors that influenced surface and interfacial tension played an important role in this transformation process. It is suggested that such transformation may, for example, result in a delayed evaporation of composite particles with significant water component, leading to observable effects in evolution of combustion aerosols (including possible local humidity maximums near a source, such as a busy road). The obtained results will be important for further development and understanding of aerosol physics and technologies, including combustion aerosols and their evolution near a source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using at. force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concns. and larger particle diams. (up to 5 μm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 0 0 1/0 2 0 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scaffolds manufactured from biological materials promise better clinical functionality, providing that characteristic features are preserved. Collagen, a prominent biopolymer, is used extensively for tissue engineering applications, because its signature biological and physico-chemical properties are retained in vitro preparations. We show here for the first time that the very properties that have established collagen as the leading natural biomaterial are lost when it is electro-spun into nano-fibres out of fluoroalcohols such as 1,1,1,3,3,3-hexafluoro-2-propanol or 2,2,2-trifluoroethanol. We further identify the use of fluoroalcohols as the major culprit in the process. The resultant nano-scaffolds lack the unique ultra-structural axial periodicity that confirms quarter-staggered supramolecular assemblies and the capacity to generate second harmonic signals, representing the typical crystalline triple-helical structure. They were also characterised by low denaturation temperatures, similar to those obtained from gelatin preparations ( p > 0.05). Likewise, circular dichroism spectra revealed extensive denaturation of the electro-spun collagen. Using pepsin digestion in combination with quantitative SDS-PAGE, we corroborate great losses of up to 99% of triple-helical collagen. In conclusion, electro-spinning of collagen out of fluoroalcohols effectively denatures this biopolymer, and thus appears to defeat its purpose, namely to create biomimetic scaffolds emulating the collagen structure and function of the extracellular matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expoxy nanocomposites with multiwell carbon nanotubes (mwcnts) filler up to 0.3%wt were prepared by sheer mixing and good dispersion of the MWCNTS in the epoxy was successfully achieved. The electrical behaviour was characterized by measurements of the alternating current (ac) and direct current (dc) conductives at room temperature. Typical percolation behaviour was observed at a low percolation threshold of 0.055%. Frequency independent ac conductivity was observed at low frequencies but not at high frequencies. An equivalent circuit models was used to predict the impedence response in these nanocomposites.