449 resultados para movement simulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity have been investigated using experiment and simulation. The experiment was conducted at 5.2 GHz by a MIMO-OFDM packet transmission demonstrator using four transmitters and four receivers built in-house. Geometric optics based ray tracing technique was used to simulate the experimental scenarios. Changes in the channel capacity dynamic range have been analysed for different number of pedestrian (0-3) and antennas (2-4). Measurement and simulation results show that the dynamic range increases with the number of pedestrian and the number of antennas on the transmitter and receiver array.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modelling droplet movement on leaf surfaces is an important component in understanding how water, pesticide or nutrient is absorbed through the leaf surface. A simple mathematical model is proposed in this paper for generating a realistic, or natural looking trajectory of a water droplet traversing a virtual leaf surface. The virtual surface is comprised of a triangular mesh structure over which a hybrid Clough-Tocher seamed element interpolant is constructed from real-life scattered data captured by a laser scanner. The motion of the droplet is assumed to be affected by gravitational, frictional and surface resistance forces and the innovation of our approach is the use of thin-film theory to develop a stopping criterion for the droplet as it moves on the surface. The droplet model is verified and calibrated using experimental measurement; the results are promising and appear to capture reality quite well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advances in computer hardware and software development techniques in the past 25 years, digital computer simulation of train movement and traction systems has been widely adopted as a standard computer-aided engineering tool [1] during the design and development stages of existing and new railway systems. Simulators of different approaches and scales are used extensively to investigate various kinds of system studies. Simulation is now proven to be the cheapest means to carry out performance predication and system behaviour characterisation. When computers were first used to study railway systems, they were mainly employed to perform repetitive but time-consuming computational tasks, such as matrix manipulations for power network solution and exhaustive searches for optimal braking trajectories. With only simple high-level programming languages available at the time, full advantage of the computing hardware could not be taken. Hence, structured simulations of the whole railway system were not very common. Most applications focused on isolated parts of the railway system. It is more appropriate to regard those applications as primarily mechanised calculations rather than simulations. However, a railway system consists of a number of subsystems, such as train movement, power supply and traction drives, which inevitably contains many complexities and diversities. These subsystems interact frequently with each other while the trains are moving; and they have their special features in different railway systems. To further complicate the simulation requirements, constraints like track geometry, speed restrictions and friction have to be considered, not to mention possible non-linearities and uncertainties in the system. In order to provide a comprehensive and accurate account of system behaviour through simulation, a large amount of data has to be organised systematically to ensure easy access and efficient representation; the interactions and relationships among the subsystems should be defined explicitly. These requirements call for sophisticated and effective simulation models for each component of the system. The software development techniques available nowadays allow the evolution of such simulation models. Not only can the applicability of the simulators be largely enhanced by advanced software design, maintainability and modularity for easy understanding and further development, and portability for various hardware platforms are also encouraged. The objective of this paper is to review the development of a number of approaches to simulation models. Attention is, in particular, given to models for train movement, power supply systems and traction drives. These models have been successfully used to enable various ‘what-if’ issues to be resolved effectively in a wide range of applications, such as speed profiles, energy consumption, run times etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid growth of mobile telephone use, satellite services, and now the wireless Internet and WLANs are generating tremendous changes in telecommunication and networking. As indoor wireless communications become more prevalent, modeling indoor radio wave propagation in populated environments is a topic of significant interest. Wireless MIMO communication exploits phenomena such as multipath propagation to increase data throughput and range, or reduce bit error rates, rather than attempting to eliminate effects of multipath propagation as traditional SISO communication systems seek to do. The MIMO approach can yield significant gains for both link and network capacities, with no additional transmitting power or bandwidth consumption when compared to conventional single-array diversity methods. When MIMO and OFDM systems are combined and deployed in a suitable rich scattering environment such as indoors, a significant capacity gain can be observed due to the assurance of multipath propagation. Channel variations can occur as a result of movement of personnel, industrial machinery, vehicles and other equipment moving within the indoor environment. The time-varying effects on the propagation channel in populated indoor environments depend on the different pedestrian traffic conditions and the particular type of environment considered. A systematic measurement campaign to study pedestrian movement effects in indoor MIMO-OFDM channels has not yet been fully undertaken. Measuring channel variations caused by the relative positioning of pedestrians is essential in the study of indoor MIMO-OFDM broadband wireless networks. Theoretically, due to high multipath scattering, an increase in MIMO-OFDM channel capacity is expected when pedestrians are present. However, measurements indicate that some reductions in channel capacity could be observed as the number of pedestrians approaches 10 due to a reduction in multipath conditions as more human bodies absorb the wireless signals. This dissertation presents a systematic characterization of the effects of pedestrians in indoor MIMO-OFDM channels. Measurement results, using the MIMO-OFDM channel sounder developed at the CSIRO ICT Centre, have been validated by a customized Geometric Optics-based ray tracing simulation. Based on measured and simulated MIMO-OFDM channel capacity and MIMO-OFDM capacity dynamic range, an improved deterministic model for MIMO-OFDM channels in indoor populated environments is presented. The model can be used for the design and analysis of future WLAN to be deployed in indoor environments. The results obtained show that, in both Fixed SNR and Fixed Tx for deterministic condition, the channel capacity dynamic range rose with the number of pedestrians as well as with the number of antenna combinations. In random scenarios with 10 pedestrians, an increment in channel capacity of up to 0.89 bits/sec/Hz in Fixed SNR and up to 1.52 bits/sec/Hz in Fixed Tx has been recorded compared to the one pedestrian scenario. In addition, from the results a maximum increase in average channel capacity of 49% has been measured while 4 antenna elements are used, compared with 2 antenna elements. The highest measured average capacity, 11.75 bits/sec/Hz, corresponds to the 4x4 array with 10 pedestrians moving randomly. Moreover, Additionally, the spread between the highest and lowest value of the the dynamic range is larger for Fixed Tx, predicted 5.5 bits/sec/Hz and measured 1.5 bits/sec/Hz, in comparison with Fixed SNR criteria, predicted 1.5 bits/sec/Hz and measured 0.7 bits/sec/Hz. This has been confirmed by both measurements and simulations ranging from 1 to 5, 7 and 10 pedestrians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Being as a relatively new approach of signalling, moving-block scheme significantly increases line capacity, especially on congested railways. This paper describes a simulation system for multi-train operation under moving-block signalling scheme. The simulator can be used to calculate minimum headways and safety characteristics under pre-set timetables or headways and different geographic and traction conditions. Advanced software techniques are adopted to support the flexibility within the simulator so that it is a general-purpose computer-aided design tool to evaluate the performance of moving block signalling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gaze and movement behaviors of association football goalkeepers were compared under two video simulation conditions (i.e., verbal and joystick movement responses) and three in situ conditions (i.e., verbal, simplified body movement, and interceptive response). The results showed that the goalkeepers spent more time fixating on information from the penalty kick taker’s movements than ball location for all perceptual judgment conditions involving limited movement (i.e., verbal responses, joystick movement, and simplified body movement). In contrast, an equivalent amount of time was spent fixating on the penalty taker’s relative motions and the ball location for the in situ interception condition, which required the goalkeepers to attempt to make penalty saves. The data suggest that gaze and movement behaviors function differently, depending on the experimental task constraints selected for empirical investigations. These findings highlight the need for research on perceptual— motor behaviors to be conducted in representative experimental conditions to allow appropriate generalization of conclusions to performance environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to tackle the growth of air travelers in airports worldwide, it is important to simulate and understand passenger flows to predict future capacity constraints and levels of service. We discuss the ability of agent-based models to understand complicated pedestrian movement in built environments. In this paper we propose advanced passenger traits to enable more detailed modelling of behaviors in terminal buildings, particularly in the departure hall around the check-in facilities. To demonstrate the concepts, we perform a series of passenger agent simulations in a virtual airport terminal. In doing so, we generate a spatial distribution of passengers within the departure hall to ancillary facilities such as cafes, information kiosks and phone booths as well as common check-in facilities, and observe the effects this has on passenger check-in and departure hall dwell times, and facility utilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subtalar joint has been presumed to account for most of the pathologic motion in the foot and ankle, but research has shown that motion at other foot joints is greater than traditionally expected. Although recent research demonstrates the complexity of the kinematic variables in the foot and ankle, it still fails to expand our knowledge of the role of the musculotendinous structures in the biomechanics of the foot and ankle and how this is affected by in-shoe orthoses. The aim of this study was to simulate the effect of in-shoe foot orthoses by manipulation of the ground reaction force (GRF) components and centre of pressure (CoP) to demonstrate the resultant effect on muscle force in selected muscles during both the rearfoot loading response and stance phase of the gait cycle. We found that any medial wedge increases ankle joint load during gait cycle, while a lateral wedge decreases the joint load during the stance phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This study investigated the impact of simulated hyperopic anisometropia and sustained near work on performance of academic-related measures in children. Methods: Participants included 16 children (mean age: 11.1 ± 0.8 years) with minimal refractive error. Academic-related outcome measures included a reading test (Neale Analysis of Reading Ability), visual information processing tests (Coding and Symbol Search subtests from the Wechsler Intelligence Scale for Children) and a reading-related eye movement test (Developmental Eye Movement test). Performance was assessed with and without 0.75 D of imposed monocular hyperopic defocus (administered in a randomised order), before and after 20 minutes of sustained near work. Unilateral hyperopic defocus was systematically assigned to either the dominant or non-dominant sighting eye to evaluate the impact of ocular dominance on any performance decrements. Results: Simulated hyperopic anisometropia and sustained near work both independently reduced performance on all of the outcome measures (p<0.001). A significant interaction was also observed between simulated anisometropia and near work (p<0.05), with the greatest decrement in performance observed during simulated anisometropia in combination with sustained near work. Laterality of the refractive error simulation (ocular dominance) did not significantly influence the outcome measures (p>0.05). A reduction of up to 12% in performance was observed across the range of academic-related measures following sustained near work undertaken during the anisometropic simulation. Conclusion: Simulated hyperopic anisometropia significantly impaired academic–related performance, particularly in combination with sustained near work. The impact of uncorrected habitual anisometropia on academic-related performance in children requires further investigation.