98 resultados para microtubule-associated proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assembly of influenza A virus at the plasma membrane of infected cells leads to release of enveloped virions that are typically round in tissue culture-adapted strains but filamentous in strains isolated from patients. The viral proteins hemagglutinin (HA), neuraminidase (NA), matrix protein 1 (M1), and M2 ion channel all contribute to virus assembly. When expressed individually or in combination in cells, they can all, under certain conditions, mediate release of membrane-enveloped particles, but their relative roles in virus assembly, release, and morphology remain unclear. To investigate these roles, we produced membrane-enveloped particles by plasmid-derived expression of combinations of HA, NA, and M proteins (M1 and M2) or by infection with influenza A virus. We monitored particle release, particle morphology, and plasma membrane morphology by using biochemical methods, electron microscopy, electron tomography, and cryo-electron tomography. Our data suggest that HA, NA, or HANA (HA plus NA) expression leads to particle release through nonspecific induction of membrane curvature. In contrast, coexpression with the M proteins clusters the glycoproteins into filamentous membrane protrusions, which can be released as particles by formation of a constricted neck at the base. HA and NA are preferentially distributed to differently curved membranes within these particles. Both the budding intermediates and the released particles are morphologically similar to those produced during infection with influenza A virus. Together, our data provide new insights into influenza virus assembly and show that the M segment together with either of the glycoproteins is the minimal requirement to assemble and release membrane-enveloped particles that are truly virus-like.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of the present study are to quantitatively analyze survivin expression, its clinicopathologic roles, and correlation with telomerase activity in a large cohort of patients with colorectal adenocarcinoma. Real-time polymerase chain reaction was used to quantitate expression level of survivin messenger RNA and human telomerase reverse transcriptase messenger RNA (telomerase activity) in 51 patients with colorectal adenocarcinomas. The findings were correlated with the clinicopathologic features of patients, which were prospectively collected into a computerized database. Survivin messenger RNA was expressed in all tumor samples. The level of expression in tumor tissues was increased in comparison with matched nontumor mucosa in the same patient (P = .01). The level of expression of survivin was significantly correlated with the level of human telomerase reverse transcriptase expression (P = .008) and size of the colorectal adenocarcinomas (P = .004). Survival of the patients with colorectal adenocarcinoma was associated with the TNM stages (P = .001) and not with the level of expression of survivin. Thus, survivin activity was altered in colorectal adenocarcinoma. The high prevalence of survivin expression and correlation with telomerase activity are important factors for consideration in gene targeting therapy for colorectal adenocarcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Albumin binds low–molecular-weight molecules, including proteins and peptides, which then acquire its longer half-life, thereby protecting the bound species from kidney clearance. We developed an experimental method to isolate albumin in its native state and to then identify [mass spectrometry (MS) sequencing] the corresponding bound low–molecular-weight molecules. We used this method to analyze pooled sera from a human disease study set (high-risk persons without cancer, n= 40; stage I ovarian cancer, n = 30; stage III ovarian cancer, n = 40) to demonstrate the feasibility of this approach as a discovery method. Methods Albumin was isolated by solid-phase affinity capture under native binding and washing conditions. Captured albumin-associated proteins and peptides were separated by gel electrophoresis and subjected to iterative MS sequencing by microcapillary reversed-phase tandem MS. Selected albumin-bound protein fragments were confirmed in human sera by Western blotting and immunocompetition. Results In total, 1208 individual protein sequences were predicted from all 3 pools. The predicted sequences were largely fragments derived from proteins with diverse biological functions. More than one third of these fragments were identified by multiple peptide sequences, and more than one half of the identified species were in vivo cleavage products of parent proteins. An estimated 700 serum peptides or proteins were predicted that had not been reported in previous serum databases. Several proteolytic fragments of larger molecules that may be cancer-related were confirmed immunologically in blood by Western blotting and peptide immunocompetition. BRCA2, a 390-kDa low-abundance nuclear protein linked to cancer susceptibility, was represented in sera as a series of specific fragments bound to albumin. Conclusion Carrier-protein harvesting provides a rich source of candidate peptides and proteins with potential diverse tissue and cellular origins that may reflect important disease-related information.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b) are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP) could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as well as contributing to the ongoing controversy about differentiation capacities of MSCs. Therefore, further studies need to consider the differences between donor samples prior to any treatment as well as the possibility of harvesting donor cells that may be inappropriate for transplantation strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lead compounds are known genotoxicants, principally affecting the integrity of chromosomes. Lead chloride and lead acetate induced concentration-dependent increases in micronucleus frequency in V79 cells, starting at 1.1 μM lead chloride and 0.05 μM lead acetate. The difference between the lead salts, which was expected based on their relative abilities to form complex acetato-cations, was confirmed in an independent experiment. CREST analyses of the micronuclei verified that lead chloride and acetate were predominantly aneugenic (CREST-positive response), which was consistent with the morphology of the micronuclei (larger micronuclei, compared with micronuclei induced by a clastogenic mechanism). The effects of high concentrations of lead salts on the microtubule network of V79 cells were also examined using immunofluorescence staining. The dose effects of these responses were consistent with the cytotoxicity of lead(II), as visualized in the neutral-red uptake assay. In a cell-free system, 20-60 μM lead salts inhibited tubulin assembly dose-dependently. The no-observed-effect concentration of lead(II) in this assay was 10 μM. This inhibitory effect was interpreted as a shift of the assembly/disassembly steady-state toward disassembly, e.g., by reducing the concentration of assembly-competent tubulin dimers. The effects of lead salts on microtubule-associated motor-protein functions were studied using a kinesin-gliding assay that mimics intracellular transport processes in vitro by quantifying the movement of paclitaxel-stabilized microtubules across a kinesin-coated glass surface. There was a dose-dependent effect of lead nitrate on microtubule motility. Lead nitrate affected the gliding velocities of microtubules starting at concentrations above 10 μM and reached half-maximal inhibition of motility at about 50 μM. The processes reported here point to relevant interactions of lead with tubulin and kinesin at low dose levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Classical cadherins are fundamental determinants of tissue organization both in health and disease. It has long been recognized that cadherins function in close cooperation with the cytoskeleton, particularly with actin. Less appreciated is the capacity for cadherins to also interact functionally and biochemically with microtubules and their associated proteins. In this review, we aim to highlight the potential for cooperativity between cadherins and microtubules. Cadherins can regulate the organization and dynamics of microtubules through mechanisms such as anchorage of minus ends and cortical capture of plus ends. Such cadherin-induced reorganization of microtubules may then affect cadherin biology by diverse processes that include directed vesicular traffic by microtubule-based motors and regulation of cortical signaling and organization. Ultimately, we hope this will stimulate fresh interest and research to understand a neglected partnership.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aggregation of the microtubule associated protein tau (MAPT) within neurons of the brain is the leading cause of tauopathies such as Alzheimer's disease. MAPT is a phospho-protein that is selectively phosphorylated by a number of kinases in vivo to perform its biological function. However, it may become pathogenically hyperphosphorylated, causing aggregation into paired helical filaments and neurofibrillary tangles. The phosphorylation induced conformational change on a peptide of MAPT (htau225−250) was investigated by performing molecular dynamics simulations with different phosphorylation patterns of the peptide (pThr231 and/or pSer235) in different simulation conditions to determine the effect of ionic strength and phosphate charge. All phosphorylation patterns were found to disrupt a nascent terminal β-sheet pattern (226VAVVR230 and 244QTAPVP249), replacing it with a range of structures. The double pThr231/pSer235 phosphorylation pattern at experimental ionic strength resulted in the best agreement with NMR structural characterization, with the observation of a transient α-helix (239AKSRLQT245). PPII helical conformations were only found sporadically throughout the simulations. Proteins 2014; 82:1907–1923. © 2014 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the past decade, plants have been used as expression hosts for the production of pharmaceutically important and commercially valuable proteins. Plants offer many advantages over other expression systems such as lower production costs, rapid scale up of production, similar post-translational modification as animals and the low likelihood of contamination with animal pathogens, microbial toxins or oncogenic sequences. However, improving recombinant protein yield remains one of the greatest challenges to molecular farming. In-Plant Activation (InPAct) is a newly developed technology that offers activatable and high-level expression of heterologous proteins in plants. InPAct vectors contain the geminivirus cis elements essential for rolling circle replication (RCR) and are arranged such that the gene of interest is only expressed in the presence of the cognate viral replication-associated protein (Rep). The expression of Rep in planta may be controlled by a tissue-specific, developmentally regulated or chemically inducible promoter such that heterologous protein accumulation can be spatially and temporally controlled. One of the challenges for the successful exploitation of InPAct technology is the control of Rep expression as even very low levels of this protein can reduce transformation efficiency, cause abnormal phenotypes and premature activation of the InPAct vector in regenerated plants. Tight regulation over transgene expression is also essential if expressing cytotoxic products. Unfortunately, many tissue-specific and inducible promoters are unsuitable for controlling expression of Rep due to low basal activity in the absence of inducer or in tissues other than the target tissue. This PhD aimed to control Rep activity through the production of single chain variable fragments (scFvs) specific to the motif III of Tobacco yellow dwarf virus (TbYDV) Rep. Due to the important role played by the conserved motif III in the RCR, it was postulated that such scFvs can be used to neutralise the activity of the low amount of Rep expressed from a “leaky” inducible promoter, thus preventing activation of the TbYDV-based InPAct vector until intentional induction. Such scFvs could also offer the potential to confer partial or complete resistance to TbYDV, and possibly heterologous viruses as motif III is conserved between geminiviruses. Studies were first undertaken to determine the levels of TbYDV Rep and TbYDV replication-associated protein A (RepA) required for optimal transgene expression from a TbYDV-based InPAct vector. Transient assays in a non-regenerable Nicotiana tabacum (NT-1) cell line were undertaken using a TbYDV-based InPAct vector containing the uidA reporter gene (encoding GUS) in combination with TbYDV Rep and RepA under the control of promoters with high (CaMV 35S) or low (Banana bunchy top virus DNA-R, BT1) activity. The replication enhancer protein of Tomato leaf curl begomovirus (ToLCV), REn, was also used in some co-bombardment experiments to examine whether RepA could be substituted by a replication enhancer from another geminivirus genus. GUS expression was observed both quantitatively and qualitatively by fluorometric and histochemical assays, respectively. GUS expression from the TbYDV-based InPAct vector was found to be greater when Rep was expected to be expressed at low levels (BT1 promoter) rather than high levels (35S promoter). GUS expression was further enhanced when Rep and RepA were co-bombarded with a low ratio of Rep to RepA. Substituting TbYDV RepA with ToLCV REn also enhanced GUS expression but more importantly highest GUS expression was observed when cells were co-transformed with expression vectors directing low levels of Rep and high levels of RepA irrespective of the level of REn. In this case, GUS expression was approximately 74-fold higher than that from a non-replicating vector. The use of different terminators, namely CaMV 35S and Nos terminators, in InPAct vectors was found to influence GUS expression. In the presence of Rep, GUS expression was greater using pInPActGUS-Nos rather than pInPActGUS-35S. The only instance of GUS expression being greater from vectors containing the 35S terminator was when comparing expression from cells transformed with Rep, RepA and REnexpressing vectors and either non-replicating vectors, p35SGS-Nos or p35SGS-35S. This difference was most likely caused by an interaction of viral replication proteins with each other and the terminators. These results indicated that (i) the level of replication associated proteins is critical to high transgene expression, (ii) the choice of terminator within the InPAct vector may affect expression levels and (iii) very low levels of Rep can activate InPAct vectors hence controlling its activity is critical. Prior to generating recombinant scFvs, a recombinant TbYDV Rep was produced in E. coli to act as a control to enable the screening for Rep-specific antibodies. A bacterial expression vector was constructed to express recombinant TbYDV Rep with an Nterminal His-tag (N-His-Rep). Despite investigating several purification techniques including Ni-NTA, anion exchange, hydrophobic interaction and size exclusion chromatography, N-His-Rep could only be partially purified using a Ni-NTA column under native conditions. Although it was not certain that this recombinant N-His-Rep had the same conformation as the native TbYDV Rep and was functional, results from an electromobility shift assay (EMSA) showed that N-His-Rep was able to interact with the TbYDV LIR and was, therefore, possibly functional. Two hybridoma cell lines from mice, immunised with a synthetic peptide containing the TbYDV Rep motif III amino acid sequence, were generated by GenScript (USA). Monoclonal antibodies secreted by the two hybridoma cell lines were first screened against denatured N-His-Rep in Western analysis. After demonstrating their ability to bind N-His-Rep, two scFvs (scFv1 and scFv2) were generated using a PCR-based approach. Whereas the variable heavy chain (VH) from both cell lines could be amplified, only the variable light chain (VL) from cell line 2 was amplified. As a result, scFv1 contained VH and VL from cell line 1, whereas scFv2 contained VH from cell line 2 and VL from cell line 1. Both scFvs were first expressed in E. coli in order to evaluate their affinity to the recombinant TbYDV N-His-Rep. The preliminary results demonstrated that both scFvs were able to bind to the denatured N-His-Rep. However, EMSAs revealed that only scFv2 was able to bind to native N-His-Rep and prevent it from interacting with the TbYDV LIR. Each scFv was cloned into plant expression vectors and co-bombarded into NT-1 cells with the TbYDV-based InPAct GUS expression vector and pBT1-Rep to examine whether the scFvs could prevent Rep from mediating RCR. Although it was expected that the addition of the scFvs would result in decreased GUS expression, GUS expression was found to slightly increase. This increase was even more pronounced when the scFvs were targeted to the cell nucleus by the inclusion of the Simian virus 40 large T antigen (SV40) nuclear localisation signal (NLS). It was postulated that the scFvs were binding to a proportion of Rep, leaving a small amount available to mediate RCR. The outcomes of this project provide evidence that very high levels of recombinant protein can theoretically be expressed using InPAct vectors with judicious selection and control of viral replication proteins. However, the question of whether the scFvs generated in this project have sufficient affinity for TbYDV Rep to prevent its activity in a stably transformed plant remains unknown. It may be that other scFvs with different combinations of VH and VL may have greater affinity for TbYDV Rep. Such scFvs, when expressed at high levels in planta, might also confer resistance to TbYDV and possibly heterologous geminiviruses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prostrate Cancer(PCa)is the most common cause of cancer death amongst Western males. PCa occurs in two distinct stages. In its early stage, growth and development is dependent primarily on male sex hormones (androgens) such as testosterone, although other growth factors have roles maintaining PCa cell survival in this stage. In the later stage of PCa development, growth and.maintenance is independent of androgen stimulation and growth factors including Insulin-like Growth Factor -1 (IGf.:·l) and Epidermal Growth Factor (EGF) are thought to have more crucial roles in cell survival and PCa progression. PCa, in its late stages, is highly aggressive and metastatic, that is, tumorigenic cells migrate from the primary site of the body (prostate) and travel via the systemic and lymphatic circulation, residing and colonising in the bone, lymph node, lung, and in more rare cases, the brain. Metastasis involves both cell migration and tissue degradation activities. The degradation of the extracellular matrix (ECM), the tissue surrounding the organ, is mediated in part by members of a family of 26 proteins called the Matrix Metalloproteases (MMPs), whilst ceil adhesion molecules, of which proteins known as Integrins are included, mediate ce11 migration. A family of proteins known as the ADAMs (A Disintegrin . And Metalloprotease domain) were a recently characterised family at the commencement of this study and now comprise 34 members. Because of their dual nature, possessing an active metaiioprotease domain, homologous to that of the MMPs, and an integrin-binding domain capable of regulating cell-cell and cell-ECM contacts, it was thought likely that members of the ADAMs family may have implications for the progression of aggressive cancers such as those ofthe prostate. This study focussed on two particular ADAMs -9 and -10. ADAM-9 has an active metalloprotease domain, which has been shown to degrade constituents of the ECM, including fibronectin, in vitro. It also has an integrin-binding capacity through association with key integrins involved in PCa progression, such as a6~1. ADAM-10 has no such integrin binding activities, but its bovine orthologue, MADM, is able to degrade coHagen type IV, a major component of basement membranes. It is likely human ADAM-10 has the same activity. It is also known to cleave Ll -a protein involved in cell anchorage activities - and collagen type XVII - which is a principal component of the hemidesmosomes of cellular tight junctions. The cleavage of these proteins enables the cell to be released from the surrounding environment and commence migratory activities, as required in metastasis. Previous studies in this laboratory showed the mRNA expression of the five ADAMs -9,- 10, -11, -15 and -17 in PCa cell lines, characteristic of androgen-dependent and androgen independent disease. These studies were furthered by the characterisation of AD AM-9, -10 and -17 mRNA regulation by Dihydrotestosterone (DHT) in the androgen-responsive cell line (LNCaP). ADAM-9 and -10 mRNA levels were elevated in response to DHT stimulation. Further to these observations, the expression of ADAM-9 and -10 was shown in primary prostate biopsies from patients with PCa. ADAM-1 0 was expressed in the cytoplasm and on the ceH membrane in epithelial and basal cells ofbenign prostate glands, but in high-grade PCa glands, ADAM-I 0 expression was localised to the nucleus and its expression levels appeared to be elevated when compared to low-grade PCa glands. These studies provided a strong background for the hypothesis that ADAM-9 and -10 have key roles in the development ofPCa and provided a basis for further studies.The aims of this study were to: 1) characterise the expression, localisation and levels, of ADAM-9 and -10 mRNA and protein in cell models representing characteristics of normal through androgen-dependent to androgen-independent PCa, as well as to expand the primary PCa biopsy data for ADAM-9 and ADAM-10 to encompass PCa bone metastases 2) establish an in vitro cell system, which could express elevated levels of ADAM-1 0 so that functional cell-based assays such as cell migration, invasion and attachment could be carried out, and 3) to extend the previous hormonal regulation data, to fully characterise the response of ADAM-9 and -10 mRNA and protein levels to DHT, IGF-1, DHT plus IGF-1 and EGF in the hormonal/growth factor responsive cell line LNCaP. For aim 1 (expression of ADAM-9 and -10 mRNA and protein), ADAM-9 and -10 mRNA were characterised by R T -PCR, while their protein products were analysed by Western blot. Both ADAM-9 and -10 mRNA and protein were expressed at readily detectable levels across progressively metastatic PCa cell lines model that represent characteristics of low-grade,. androgen-dependent (LNCaP and C4) to high-grade, androgen-independent (C4-2 and C4-2B) PCa. When the non-tumorigenic prostate cell line RWPE-1 was compared with the metastatic PCa cell line PC-3, differential expression patterns were seen by Western blot analysis. For ADAM-9, the active form was expressed at higher levels in RWPE-1, whilst subcellular fractionation showed that the active form of ADAM-9 was predominantly located in the cell nucleus. For ADAM-I 0, in both of the cell Jines, a nuclear specific isoform of the mature, catalytically active ADAM-I 0 was found. This isoforrn differed by -2 kDa in Mr (smaller) than the cytoplasmic specific isoform. Unprocessed ADAM-I 0 was readily detected in R WPE-1 cell lines but only occasionally detected in PC-3 cell lines. Immunocytochemistry using ADAM-9 and -10 specific antibodies confirmed nuclear, cytoplasmic and membrane expression of both ADAMs in these two cell lines. To examine the possibility of ADAM-9 and -10 being shed into the extracellular environment, membrane vesicles that are constitutively shed from the cell surface and contain membrane-associated proteins were collected from the media of the prostate cell lines RWPE-1, LNCaP and PC-3. ADAM-9 was readily detectable in RWPE- 1 and LNCaP cell membrane vesicles by Western blot analysis, but not in PC-3 cells, whilst the expression of ADAM-I 0 was detected in shed vesicles from each of these prostate cell lines. By Laser Capture Microdissection (LCM), secretory epithelial cells of primary prostate gland biopsies were isolated from benign and malignant glands. These secretory cells, by Western blot analysis, expressed similar Mr bands for ADAM-9 and -10 that were found in PCa cell lines in vitro, indicating that the nuclear specific isoforrn of ADAM-I 0 was present in PCa primary tumours and may represent the predominantly nuclear form of ADAM-I 0 expression, previously shown in high-grade PCa by immunohistochemistry (IHC). ADAM-9 and -10 were also examined by IHC in bone metastases taken from PCa patients at biopsy. Both ADAMs could be detected at levels similar to those shown for Prostate Specific Antigen (PSA) in these biopsies. Furthermore, both ADAM-9 and -10 were predominantly membrane- bound with occasional nuclear expression. For aim 2, to establish a cell system that over-expressed levels of ADAM-10, two fulllength ADAM-I 0 mammalian expression vectors were constructed; ADAM-I 0 was cloned into pcDNA3.1, which contains a CMV promoter, and into pMEP4, containing an inducible metallothionine promoter, whose activity is stimulated by the addition of CdC}z. The efficiency of these two constructs was tested by way of transient transfection in the PCa cell line PC-3, whilst the pcDNA3.1 construct was also tested in the RWPE-1 prostate cell line. Resultant Western blot analysis for all transient transfection assays showed that levels of ADAM-I 0 were not significantly elevated in any case, when compared to levels of the housekeeping gene ~-Tubulin, despite testing various levels of vector DNA, and, for pMEP4, the induction of the transfected cell system with different degrees of stimulation with CdCh to activate the metallothionine promoter post-transfection. Another study in this laboratory found similar results when the same full length ADAM-10 sequence was cloned into a Green Fluorescent Protein (GFP) expressing vector, as no fluorescence was observed by means of transient tran sfection in the same, and other, PCa cell lines. It was hypothesised that the Kozak sequence included in the full-length construct (human ADAMI 0 naturally occurring sequence) is not strong enough to initiate translation in an artificial system, in cells, which, as described in Aim 1, are already expressing readily detectable levels of endogenous ADAM-10. As a result, time constraints prevented any further progress with Aim 2 and functional studies including cell attachment, invasion and migration were unable to be explored. For Aim 3, to characterise the response of ADAM-9 and -10 mRNA and protein levels to DHT, IGF-1, DHT plus IGF-1 and EGF in LNCaP cells, the levels of ADAM-9 and -10 mRNA were not stimulated by DHT or IGF-I alone, despite our previous observations that initially characterised ADAM-9 and -10 mRNA as being responsive to DHT. However, IGF-1 in synergy with DHT did significantly elevate mRNA levels ofboth ADAMs. In the case of ADAM-9 and -10 protein, the same trends of stimulation as found at the rnRNA level were shown by Western blot analysis when ADAM-9 and -10 signal intensity was normalised with the housekeeping protein ~-Tubulin. For EGF treatment, both ADAM-9 and -10 mRNA and protein levels were significantly elevated, and further investigation vm found this to be the case for each of these ADAMs proteins in the nuclear fractions of LNCaP cells. These studies are the first to describe extensively, the expression and hormonal/growth factor regulation of two members of the ADAMs family ( -9 and -1 0) in PCa. These observations imply that the expression of ADAM-9 and -10 have varied roles in PCa whilst it develops from androgen-sensitive (early stage disease), through to an androgeninsensitive (late-stage), metastatic disease. Further studies are now required to investigate the several key areas of focus that this research has revealed, including: • Investigation of the cellular mechanisms that are involved in actively transporting the ADAMs to the cell's nuclear compartment and the ADAMs functional roles in the cell nucleus. • The construction of a full-length human ADAM-10 mammalian expression construct with the introduction of a new Kozak sequence, that elevates ADAM-I 0 expression in an in vitro cell system are required, so that functional assays such as cell invasion, migration and attachment may be carried out to fmd the functional consequences of ADAM expression on cellular behaviour. • The regulation studies also need to be extended by confirming the preliminary observations that the nuclear levels of ADAMs may also be elevated by hormones and growth factors such as DHT, IGF-1 and EGF, as well as the regulation of levels of plasma membrany vesicle associated ADAM expression. Given the data presented in this study, it is likely the ADAMs have differential roles throughout the development of PCa due to their differential cellular localisation and synergistic growth-factor regulation. These observations, along with those further studies outlined above, are necessary in identifying these specific components ofPCa metastasis to which the ADAMs may contribute.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geminivirus infectivity is thought to depend on interactions between the virus replication-associated proteins Rep or RepA and host retinoblastoma-related proteins (pRBR), which control cell-cycle progression. It was determined that the substitution of two amino acids in the Maize streak virus (MSV) RepA pRBR-interaction motif (LLCNE to LLCLK) abolished detectable RepA-pRBR interaction in yeast without abolishing infectivity in maize. Although the mutant virus was infectious in maize, it induced less severe symptoms than the wild-type virus. Sequence analysis of progeny viral DNA isolated from infected maize enabled detection of a high-frequency single-nucleotide reversion of C(601)A in the 3 nt mutated sequence of the Rep gene. Although it did not restore RepA-pRBR interaction in yeast, sequence-specific PCR showed that, in five out of eight plants, the C(601)A reversion appeared by day 10 post-inoculation. In all plants, the C(601)A revertant eventually completely replaced the original mutant population, indicating a high selection pressure for the single-nucleotide reversion. Apart from potentially revealing an alternative or possibly additional function for the stretch of DNA that encodes the apparently non-essential pRBR-interaction motif of MSV Rep, the consistent emergence and eventual dominance of the C(601)A revertant population might provide a useful tool for investigating aspects of MSV biology, such as replication, mutation and evolution rates, and complex population phenomena, such as competition between quasispecies and population turnover. © 2005 SGM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The majority of non-small cell lung cancer (NSCLC) patients present with advanced disease and with a 5 year survival rate of <15% for these patients, treatment outcomes are considered extremely disappointing. Standard chemotherapy regimens provide some improvement to ~40% of patients. However, intrinsic and acquired chemoresistance are a significant problem and hinder sustained long term benefits of such treatments. Advances in proteomic and genomic profiling have increased our understanding of the aberrant molecular mechanisms that are driving an individual's tumour. The increased sensitivity of these technologies has enabled molecular profiling at the stage of initial biopsy thus paving the way for a more personalised approach to the treatment of cancer patients. Improvements in diagnostics together with a wave of new targeted small molecule inhibitors and monoclonal antibodies have revolutionised the treatment of cancer. To date there are essentially three targeted agents approved for clinical use in NSCLC. The tyrosine kinase inhibitor (TKI) erlotinib, which targets the epidermal growth factor receptor (EGFR) TK domain, has proven to be an effective treatment strategy in patients who harbour activating mutations in the EGFR TK domain. Bevacizumab a monoclonal antibody targeting the vascular endothelial growth factor (VEGF) can improve survival, response rates, and progression-free survival when used in combination with chemotherapy. Crizotinib, a small-molecule drug, inhibits the tyrosine kinase activity of the echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) fusion protein, resulting in decreased tumour cell growth, migration, and invasiveness in patients with locally advanced or metastatic NSCLC. The clinical relevance of several other targeted agents are under investigation in distinct molecular subsets of patients with key "driver" mutations including: KRAS, HER2, BRAF, MET, PIK3CA, AKT1,MAP2K1, ROS1 and RET. Often several pathways are activated simultaneously and crosstalk between pathways allows tumour cells to escape the inhibition of a single targeted agent. This chapter will explore the clinical development of currently available targeted therapies for NSCLC as well as those in clinical trials and will examine the synergy between cytotoxic therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Along with the tri-lineage of bone, cartilage and fat, human mesenchymal stem cells (hMSCs) retain neural lineage potential. Multiple factors have been described that influence lineage fate of hMSCs including the extracellular microenvironment or niche. The niche includes the extracellular matrix (ECM) providing structural composition, as well as other associated proteins and growth factors, which collectively influence hMSC stemness and lineage specification. As such, lineage specific differentiation of MSCs is mediated through interactions including cell–cell and cell–matrix, as well as through specific signalling pathways triggering downstream events. Proteoglycans (PGs) are ubiquitous within this microenvironment and can be localised to the cell surface or embedded within the ECM. In addition, the heparan sulfate (HS) and chondroitin sulfate (CS) families of PGs interact directly with a number of growth factors, signalling pathways and ECM components including FGFs, Wnts and fibronectin. With evidence supporting a role for HSPGs and CSPGs in the specification of hMSCs down the osteogenic, chondrogenic and adipogenic lineages, along with the localisation of PGs in development and regeneration, it is conceivable that these important proteins may also play a role in the differentiation of hMSCs toward the neuronal lineage. Here we summarise the current literature and highlight the potential for HSPG directed neural lineage fate specification in hMSCs, which may provide a new model for brain damage repair.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Virus-based transgene expression systems have become particularly valuable for recombinant protein production in plants. The dual-module in-plant activation (INPACT) expression platform consists of a uniquely designed split-gene cassette incorporating the cis replication elements of Tobacco yellow dwarf geminivirus (TYDV) and an ethanol-inducible activation cassette encoding the TYDV Rep and RepA replication-associated proteins. The INPACT system is essentially tailored for recombinant protein production in stably transformed plants and provides both inducible and high-level transient transgene expression with the potential to be adapted to diverse crop species. The construction of a novel split-gene cassette, the inducible nature of the system and the ability to amplify transgene expression via rolling-circle replication differentiates this system from other DNA- and RNA-based virus vector systems used for stable or transient recombinant protein production in plants. Here we provide a detailed protocol describing the design and construction of a split-gene INPACT cassette, and we highlight factors that may influence optimal activation and amplification of gene expression in transgenic plants. By using Nicotiana tabacum, the protocol takes 6-9 months to complete, and recombinant proteins expressed using INPACT can accumulate to up to 10% of the leaf total soluble protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Maize streak virus (MSV), which causes maize streak disease (MSD), is the major viral pathogenic constraint on maize production in Africa. Type member of the Mastrevirus genus in the family Geminiviridae, MSV has a 2.7 kb, single-stranded circular DNA genome encoding a coat protein, movement protein, and the two replication-associated proteins Rep and RepA. While we have previously developed MSV-resistant transgenic maize lines constitutively expressing ‘‘dominant negative mutant’’ versions of the MSV Rep, the only transgenes we could use were those that caused no developmental defects during the regeneration of plants in tissue culture. A better transgene expression system would be an inducible one, where resistance-conferring transgenes are expressed only in MSV-infected cells. However, most known inducible transgene expression systems are hampered by background or ‘‘leaky’’ expression in the absence of the inducer. Here we describe an adaptation of the recently developed INPACT system to express MSV-derived resistance genes in cell culture. Split gene cassette constructs (SGCs) were developed containing three different transgenes in combination with three different promoter sequences. In each SGC, the transgene was split such that it would be translatable only in the presence of an infecting MSV’s replication associated protein. We used a quantitative real-time PCR assay to show that one of these SGCs (pSPLITrepIII-Rb-Ubi) inducibly inhibits MSV replication as efficiently as does a constitutively expressed transgene that has previously proven effective in protecting transgenic maize from MSV. In addition, in our cell-culture based assay pSPLITrepIII-Rb-Ubi inhibited replication of diverse MSV strains, and even, albeit to a lesser extent, of a different mastrevirus species. The application of this new technology to MSV resistance in maize could allow a better, more acceptable product.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context: Osteoporosis is a common, highly heritable condition that causes substantial morbidity and mortality, the etiopathogenesis of which is poorly understood. Genetic studies are making increasingly rapid progress in identifying the genes involved. Evidence Acquisition and Synthesis: In this review, we will summarize the current understanding of the genetics of osteoporosis based on publications from PubMed from the year 1987 onward. Conclusions: Most genes involved in osteoporosis identified to date encode components of known pathways involved in bone synthesis or resorption, but as the field progresses, new pathways are being identified. Only a small proportion of the total genetic variation involved in osteoporosis has been identified, and new approaches will be required to identify most of the remaining genes.