50 resultados para lower upper bound estimation
Resumo:
The success rate of carrier phase ambiguity resolution (AR) is the probability that the ambiguities are successfully fixed to their correct integer values. In existing works, an exact success rate formula for integer bootstrapping estimator has been used as a sharp lower bound for the integer least squares (ILS) success rate. Rigorous computation of success rate for the more general ILS solutions has been considered difficult, because of complexity of the ILS ambiguity pull-in region and computational load of the integration of the multivariate probability density function. Contributions of this work are twofold. First, the pull-in region mathematically expressed as the vertices of a polyhedron is represented by a multi-dimensional grid, at which the cumulative probability can be integrated with the multivariate normal cumulative density function (mvncdf) available in Matlab. The bivariate case is studied where the pull-region is usually defined as a hexagon and the probability is easily obtained using mvncdf at all the grid points within the convex polygon. Second, the paper compares the computed integer rounding and integer bootstrapping success rates, lower and upper bounds of the ILS success rates to the actual ILS AR success rates obtained from a 24 h GPS data set for a 21 km baseline. The results demonstrate that the upper bound probability of the ILS AR probability given in the existing literatures agrees with the actual ILS success rate well, although the success rate computed with integer bootstrapping method is a quite sharp approximation to the actual ILS success rate. The results also show that variations or uncertainty of the unit–weight variance estimates from epoch to epoch will affect the computed success rates from different methods significantly, thus deserving more attentions in order to obtain useful success probability predictions.
Resumo:
A point interpolation method with locally smoothed strain field (PIM-LS2) is developed for mechanics problems using a triangular background mesh. In the PIM-LS2, the strain within each sub-cell of a nodal domain is assumed to be the average strain over the adjacent sub-cells of the neighboring element sharing the same field node. We prove theoretically that the energy norm of the smoothed strain field in PIM-LS2 is equivalent to that of the compatible strain field, and then prove that the solution of the PIM- LS2 converges to the exact solution of the original strong form. Furthermore, the softening effects of PIM-LS2 to system and the effects of the number of sub-cells that participated in the smoothing operation on the convergence of PIM-LS2 are investigated. Intensive numerical studies verify the convergence, softening effects and bound properties of the PIM-LS2, and show that the very ‘‘tight’’ lower and upper bound solutions can be obtained using PIM-LS2.
Resumo:
In this paper, a hybrid smoothed finite element method (H-SFEM) is developed for solid mechanics problems by combining techniques of finite element method (FEM) and Node-based smoothed finite element method (NS-FEM) using a triangular mesh. A parameter is equipped into H-SFEM, and the strain field is further assumed to be the weighted average between compatible stains from FEM and smoothed strains from NS-FEM. We prove theoretically that the strain energy obtained from the H-SFEM solution lies in between those from the compatible FEM solution and the NS-FEM solution, which guarantees the convergence of H-SFEM. Intensive numerical studies are conducted to verify these theoretical results and show that (1) the upper and lower bound solutions can always be obtained by adjusting ; (2) there exists a preferable at which the H-SFEM can produce the ultrasonic accurate solution.
Resumo:
Algebraic immunity AI(f) defined for a boolean function f measures the resistance of the function against algebraic attacks. Currently known algorithms for computing the optimal annihilator of f and AI(f) are inefficient. This work consists of two parts. In the first part, we extend the concept of algebraic immunity. In particular, we argue that a function f may be replaced by another boolean function f^c called the algebraic complement of f. This motivates us to examine AI(f ^c ). We define the extended algebraic immunity of f as AI *(f)= min {AI(f), AI(f^c )}. We prove that 0≤AI(f)–AI *(f)≤1. Since AI(f)–AI *(f)= 1 holds for a large number of cases, the difference between AI(f) and AI *(f) cannot be ignored in algebraic attacks. In the second part, we link boolean functions to hypergraphs so that we can apply known results in hypergraph theory to boolean functions. This not only allows us to find annihilators in a fast and simple way but also provides a good estimation of the upper bound on AI *(f).
Resumo:
So far, low probability differentials for the key schedule of block ciphers have been used as a straightforward proof of security against related-key differential analysis. To achieve resistance, it is believed that for cipher with k-bit key it suffices the upper bound on the probability to be 2− k . Surprisingly, we show that this reasonable assumption is incorrect, and the probability should be (much) lower than 2− k . Our counter example is a related-key differential analysis of the well established block cipher CLEFIA-128. We show that although the key schedule of CLEFIA-128 prevents differentials with a probability higher than 2− 128, the linear part of the key schedule that produces the round keys, and the Feistel structure of the cipher, allow to exploit particularly chosen differentials with a probability as low as 2− 128. CLEFIA-128 has 214 such differentials, which translate to 214 pairs of weak keys. The probability of each differential is too low, but the weak keys have a special structure which allows with a divide-and-conquer approach to gain an advantage of 27 over generic analysis. We exploit the advantage and give a membership test for the weak-key class and provide analysis of the hashing modes. The proposed analysis has been tested with computer experiments on small-scale variants of CLEFIA-128. Our results do not threaten the practical use of CLEFIA.
Resumo:
A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.
Resumo:
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.
Resumo:
We study sample-based estimates of the expectation of the function produced by the empirical minimization algorithm. We investigate the extent to which one can estimate the rate of convergence of the empirical minimizer in a data dependent manner. We establish three main results. First, we provide an algorithm that upper bounds the expectation of the empirical minimizer in a completely data-dependent manner. This bound is based on a structural result due to Bartlett and Mendelson, which relates expectations to sample averages. Second, we show that these structural upper bounds can be loose, compared to previous bounds. In particular, we demonstrate a class for which the expectation of the empirical minimizer decreases as O(1/n) for sample size n, although the upper bound based on structural properties is Ω(1). Third, we show that this looseness of the bound is inevitable: we present an example that shows that a sharp bound cannot be universally recovered from empirical data.
Resumo:
We study Krylov subspace methods for approximating the matrix-function vector product φ(tA)b where φ(z) = [exp(z) - 1]/z. This product arises in the numerical integration of large stiff systems of differential equations by the Exponential Euler Method, where A is the Jacobian matrix of the system. Recently, this method has found application in the simulation of transport phenomena in porous media within mathematical models of wood drying and groundwater flow. We develop an a posteriori upper bound on the Krylov subspace approximation error and provide a new interpretation of a previously published error estimate. This leads to an alternative Krylov approximation to φ(tA)b, the so-called Harmonic Ritz approximant, which we find does not exhibit oscillatory behaviour of the residual error.
Resumo:
This paper formulates a node-based smoothed conforming point interpolation method (NS-CPIM) for solid mechanics. In the proposed NS-CPIM, the higher order conforming PIM shape functions (CPIM) have been constructed to produce a continuous and piecewise quadratic displacement field over the whole problem domain, whereby the smoothed strain field was obtained through smoothing operation over each smoothing domain associated with domain nodes. The smoothed Galerkin weak form was then developed to create the discretized system equations. Numerical studies have demonstrated the following good properties: NS-CPIM (1) can pass both standard and quadratic patch test; (2) provides an upper bound of strain energy; (3) avoid the volumetric locking; (4) provides the higher accuracy than those in the node-based smoothed schemes of the original PIMs.
Resumo:
In this paper, we review the sequential slotted amplify-decode-and-forward (SADF) protocol with half-duplex single-antenna and evaluate its performance in terms of pairwise error probability (PEP). We obtain the PEP upper bound of the protocol and find out that the achievable diversity order of the protocol is two with arbitrary number of relay terminals. To achieve the maximum achievable diversity order, we propose a simple precoder that is easy to implement with any number of relay terminals and transmission slots. Simulation results show that the proposed precoder achieves the maximum achievable diversity order and has similar BER performance compared to some of the existing precoders.
Resumo:
In this paper, we propose a novel relay ordering and scheduling strategy for the sequential slotted amplify-and-forward (SAF) protocol and evaluate its performance in terms of diversity-multiplexing trade-off (DMT). The relays between the source and destination are grouped into two relay clusters based on their respective locations. The proposed strategy achieves partial relay isolation and decreases the decoding complexity at the destination. We show that the DMT upper bound of sequential-SAF with the proposed strategy outperforms other amplify and forward protocols and is more practical compared to the relay isolation assumption made in the original paper [1]. Simulation result shows that the sequential-SAF protocol with the proposed strategy has better outage performance compared to the existing AF and non-cooperative protocols in high SNR regime.
Resumo:
In this paper we investigate the distribution of the product of Rayleigh distributed random variables. Considering the Mellin-Barnes inversion formula and using the saddle point approach we obtain an upper bound for the product distribution. The accuracy of this tail-approximation increases as the number of random variables in the product increase.
Resumo:
The ultimate goal of an access control system is to allocate each user the precise level of access they need to complete their job - no more and no less. This proves to be challenging in an organisational setting. On one hand employees need enough access to the organisation’s resources in order to perform their jobs and on the other hand more access will bring about an increasing risk of misuse - either intentionally, where an employee uses the access for personal benefit, or unintentionally, through carelessness or being socially engineered to give access to an adversary. This thesis investigates issues of existing approaches to access control in allocating optimal level of access to users and proposes solutions in the form of new access control models. These issues are most evident when uncertainty surrounding users’ access needs, incentive to misuse and accountability are considered, hence the title of the thesis. We first analyse access control in environments where the administrator is unable to identify the users who may need access to resources. To resolve this uncertainty an administrative model with delegation support is proposed. Further, a detailed technical enforcement mechanism is introduced to ensure delegated resources cannot be misused. Then we explicitly consider that users are self-interested and capable of misusing resources if they choose to. We propose a novel game theoretic access control model to reason about and influence the factors that may affect users’ incentive to misuse. Next we study access control in environments where neither users’ access needs can be predicted nor they can be held accountable for misuse. It is shown that by allocating budget to users, a virtual currency through which they can pay for the resources they deem necessary, the need for a precise pre-allocation of permissions can be relaxed. The budget also imposes an upper-bound on users’ ability to misuse. A generalised budget allocation function is proposed and it is shown that given the context information the optimal level of budget for users can always be numerically determined. Finally, Role Based Access Control (RBAC) model is analysed under the explicit assumption of administrators’ uncertainty about self-interested users’ access needs and their incentives to misuse. A novel Budget-oriented Role Based Access Control (B-RBAC) model is proposed. The new model introduces the notion of users’ behaviour into RBAC and provides means to influence users’ incentives. It is shown how RBAC policy can be used to individualise the cost of access to resources and also to determine users’ budget. The implementation overheads of B-RBAC is examined and several low-cost sub-models are proposed.
Resumo:
In this paper we analyse the effects of highway traffic flow parameters like vehicle arrival rate and density on the performance of Amplify and Forward (AF) cooperative vehicular networks along a multi-lane highway under free flow state. We derive analytical expressions for connectivity performance and verify them with Monte-Carlo simulations. When AF cooperative relaying is employed together with Maximum Ratio Combining (MRC) at the receivers the average route error rate shows 10-20 fold improvement compared to direct communication. A 4-8 fold increase in maximum number of traversable hops can also be observed at different vehicle densities when AF cooperative communication is used to strengthen communication routes. However the theorical upper bound of maximum number of hops promises higher performance gains.