106 resultados para life-cycle analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite of a significant contribution of transport sector in the global economy and society, it is one of the largest sources of global energy consumption, green house gas emissions and environmental pollutions. A complete look onto the whole life cycle environmental inventory of this sector will be helpful to generate a holistic understanding of contributory factors causing emissions. Previous studies were mainly based on segmental views which mostly compare environmental impacts of different modes of transport, but very few consider impacts other than the operational phase. Ignoring the impacts of non-operational phases, e.g., manufacture, construction, maintenance, may not accurately reflect total contributions on emissions. Moreover an integrated study for all motorized modes of road transport is also needed to achieve a holistic estimation. The objective of this study is to develop a component based life cycle inventory model which considers impacts of both operational and non-operational phases of the whole life as well as different transport modes. In particular, the whole life cycle of road transport has been segmented into vehicle, infrastructure, fuel and operational components and inventories have been conducted on each component. The inventory model has been demonstrated using the road transport of Singapore. Results show that total life cycle green house gas emissions from the road transport sector of Singapore is 7.8 million tons per year, among which operational phase and non-operational phases contribute about 55% and about 45%, respectively. Total amount of criteria air pollutants are 46, 8.5, 33.6, 13.6 and 2.6 thousand tons per year for CO, SO2, NOx, VOC and PM10, respectively. From the findings, it can be deduced that stringent government policies on emission control measures have a significant impact on reducing environmental pollutions. In combating global warming and environmental pollutions the promotion of public transport over private modes is an effective sustainable policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road infrastructure has been considered as one of the most expensive and extensive infrastructure assets of the built environment globally. This asset also impacts the natural environment significantly during different phases of life e.g. construction, use, maintenance and end-of-life. The growing emphasis for sustainable development to meet the needs of future generations requires mitigation of the environmental impacts of road infrastructure during all phases of life e.g. construction, operation and end-of-life disposal (as required). Life-cycle analysis (LCA), a method of quantification of all stages of life, has recently been studied to explore all the environmental components of road projects due to limitations of generic environmental assessments. The LCA ensures collection and assessment of the inputs and outputs relating to any potential environmental factor of any system throughout its life. However, absence of a defined system boundary covering all potential environmental components restricts the findings of the current LCA studies. A review of the relevant published LCA studies has identified that environmental components such as rolling resistance of pavement, effect of solar radiation on pavement(albedo), traffic congestion during construction, and roadway lighting & signals are not considered by most of the studies. These components have potentially higher weightings for environment damage than several commonly considered components such as materials, transportation and equipment. This paper presents the findings of literature review, and suggests a system boundary model for LCA study of road infrastructure projects covering potential environmental components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The report presents a methodology for whole of life cycle cost analysis of alternative treatment options for bridge structures, which require rehabilitation. The methodology has been developed after a review of current methods and establishing that a life cycle analysis based on a probabilistic risk approach has many advantages including the essential ability to consider variability of input parameters. The input parameters for the analysis are identified as initial cost, maintenance, monitoring and repair cost, user cost and failure cost. The methodology utilizes the advanced simulation technique of Monte Carlo simulation to combine a number of probability distributions to establish the distribution of whole of life cycle cost. In performing the simulation, the need for a powerful software package, which would work with spreadsheet program, has been identified. After exploring several products on the market, @RISK software has been selected for the simulation. In conclusion, the report presents a typical decision making scenario considering two alternative treatment options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite of significant contributions of urban road transport to global economy and society, it is one of the largest sources of local and global emission impact. In order to address the environmental concerns of urban road transport it is imperative to achieve a holistic understanding of contributory factors causing emissions which requires a complete look onto its whole life cycle. Previous studies were mainly based on segmental views which mostly studied environmental impacts of individual transport modes and very few considered impacts other than operational phase. This study develops an integrated life cycle inventory model for urban road transport emissions from a holistic modal perspective. Singapore case was used to demonstrate the model. Results show that total life cycle greenhouse gas emission from Singapore’s road transport sector is 7.8 million tons per year. The total amount of criteria air pollutants are also estimated in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses the lens of life-cycle thinking to discuss recent developments in the Australian mass market fashion industry, and to explore the opportunities and barriers to implementing lifecycle thinking within mass market design processes. Life-cycle analysis is a quantitative tool used to assess the environmental impact of a material or product. However the underlying thinking of life-cycle analysis can also be employed more generally, enabling a designer to assess their processes and design decisions for sustainability. A fashion designer employing life cycle thinking would consider every stage in the life of a garment from fibre and textiles through to consumer use, to eventual disposal and beyond disposal to reuse and later disassembly for fibre recycling. Although life-cycle thinking is rarely considered in the design processes of the fast-paced, price-driven mass market, this paper explores its potential and suggests ways in which it could be implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainable development is about making societal investments. These investments should be in synchronization with the natural environment, trends of social development, as well as organisational and local economies over a long time span. Traditionally in the eyes of clients, project development will need to produce the required profit margins, with some degrees of consideration for other impacts. This is being changed as all citizens of our society are becoming more aware of concepts and challenges such as the climate change, greenhouse footprints, and social dimensions of sustainability, and will in turn demand answers to these issues in built facilities. A large number of R&D projects have focused on the technical advancement and environmental assessment of products and built facilities. It is equally important address the cost/benefit issue, as developers in the world would not want to loose money by investing in built assets. For infrastructure projects, due to its significant cost of development and lengthy delivery time, presenting the full money story of going green is of vital importance. Traditional views of life-cycle costing tend to focus on the pure economics of a construction project. Sustainability concepts are not broadly integrated with the current LCCA in the construction sector. To rectify this problem, this paper reports on the progress to date of developing and extending contemporary LCCA models in the evaluation of road infrastructure sustainability. The suggested new model development is based on sustainability indicators identified through previous research, and incorporating industry verified cost elements of sustainability measures. The on-going project aims to design and a working model for sustainability life-cycle costing analysis for this type of infrastructure projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With increasing pressure to provide environmentally responsible infrastructure products and services, stakeholders are putting significant foci on the early identification of financial viability and outcome of infrastructure projects. Traditionally, there has been an imbalance between sustainable measures and project budget. On one hand, the industry tends to employ the first-cost mentality and approach to developing infrastructure projects. On the other, environmental experts and technology innovators often push for the ultimately green products and systems without much of a concern for cost. This situation is being quickly changed as the industry is under pressure to continue to return profit, while better adapting to current and emerging global issues of sustainability. For the infrastructure sector to contribute to sustainable development, it will need to increase value and efficiency. Thus, there is a great need for tools that will enable decision makers evaluate competing initiatives and identify the most sustainable approaches to procuring infrastructure projects. In order to ensure that these objectives are achieved, the concept of life-cycle costing analysis (LCCA) will play significant roles in the economics of an infrastructure project. Recently, a few research initiatives have applied the LCCA models for road infrastructure that focused on the traditional economics of a project. There is little coverage of life-cycle costing as a method to evaluate the criteria and assess the economic implications of pursuing sustainability in road infrastructure projects. To rectify this problem, this paper reviews the theoretical basis of previous LCCA models before discussing their inability to determinate the sustainability indicators in road infrastructure project. It then introduces an on-going research aimed at developing a new model to integrate the various new cost elements based on the sustainability indicators with the traditional and proven LCCA approach. It is expected that the research will generate a working model for sustainability based life-cycle cost analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainability has been increasingly recognised as an integral part of highway infrastructure development. In practice however, the fact that financial return is still a project’s top priority for many, environmental aspects tend to be overlooked or considered as a burden, as they add to project costs. Sustainability and its implications have a far-reaching effect on each project over time. Therefore, with highway infrastructure’s long-term life span and huge capital demand, the consideration of environmental cost/ benefit issues is more crucial in life-cycle cost analysis (LCCA). To date, there is little in existing literature studies on viable estimation methods for environmental costs. This situation presents the potential for focused studies on environmental costs and issues in the context of life-cycle cost analysis. This paper discusses a research project which aims to integrate the environmental cost elements and issues into a conceptual framework for life cycle costing analysis for highway projects. Cost elements and issues concerning the environment were first identified through literature. Through questionnaires, these environmental cost elements will be validated by practitioners before their consolidation into the extension of existing and worked models of life-cycle costing analysis (LCCA). A holistic decision support framework is being developed to assist highway infrastructure stakeholders to evaluate their investment decision. This will generate financial returns while maximising environmental benefits and sustainability outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life cycle energy analysis (LCEA) of eight residential buildings in and around Brisbane, Queensland, Australia, is undertaken in this study. Energy used in all three phases of construction, operation and demolition are considered. It is found that the main contribution to the operational energy in residential buildings is from use of general appliance. The choice of building materials is shown to have significant effects on the embodied energy for the production, construction, maintenance and demolition phases. From this study, it is shown that the embodied energy may vary from 10% to 30%, while the operational energy may vary from 65% to 90%. The demolition energy generally accounts for less than 4% of life cycle energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n design of bridge structures, it is common to adopt a 100 year design life. However, analysis of a number of case study bridges in Australia has indicated that the actual design life can be significantly reduced due to premature deterioration resulting from exposure to aggressive environments. A closer analysis of the cost of rehabilitation of these structures has raised some interesting questions. What would be the real service life of a bridge exposed to certain aggressive environments? What is the strategy of conducting bridge rehabilitation? And what are the life cycle costs associated with rehabilitation? A research project funded by the CRC for Construction Innovation in Australia is aimed at addressing these issues. This paper presents a concept map for assisting decision makers to appropriately choose the best treatment for bridge rehabilitation affected by premature deterioration through exposure to aggressive environments in Australia. The decision analysis is referred to a whole of life cycle cost analysis by considering appropriate elements of bridge rehabilitation costs. In addition, the results of bridges inspections in Queensland are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Public awareness and the nature of highway construction works demand that sustainability measures are first on the development agenda. However, in the current economic climate, individual volition and enthusiasm for such high capital investments do not present as strong cases for decision making as the financial pictures of pursuing sustainability. Some stakeholders consider sustainability to be extra work that costs additional money. Though, stakeholders realised its importance in infrastructure development. They are keen to identify the available alternatives and financial implications on a lifecycle basis. Highway infrastructure development is a complex rocess which requires expertise and tools to evaluate investment options, such as environmentally sustainable features for road and highway development. Life-cycle cost analysis (LCCA) is a valuable approach for investment decision making for construction works. However, LCCA applications in highway development are still limited. Current models, for example focus on economic issues alone and do not deal with sustainability factors, which are more difficult to quantify and encapsulate in estimation modules. This paper reports the research which identifies sustainability related factors in highway construction projects, in quantitative and qualitative forms of a multi-criteria analysis. These factors are then incorporated into past and proven LCCA models to produce a new long term decision support model. The research via questionnaire, model building, analytical hierarchy processes (AHP) and case studies have identified, evaluated and then processed highway sustainability related cost elements. These cost elements need to be verified by industry before being integrated for further development of the model. Then the Australian construction industry will have a practical tool to evaluate investment decisions which provide an optimum balance between financial viability and sustainability deliverables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life-cycle management (LCM) has been employed in the management of construction projects for many years in order to reduce whole life cost, time, risk and improve the service to owners. However, owing to lack of an effective information sharing platform, the current LCM of construction projects is not effectively used in the construction industry. Based upon the analysis of the information flow of LCM, a virutal prototyping (VP)-based communication and collaboration information platform is proposed. Following this, the platform is customized using DASSAULT sofware. The whole process of implementing the VP-based LCM are also discussed and, from a simple case study, it is demonstrated that the VP-based communication and collaboration information platform is an effective tool to support the LCM of construction projects.