83 resultados para larval morphology
Resumo:
It is well established that the traditional taxonomy and nomenclature of Chironomidae relies on adult males whose usually characteristic genitalia provide evidence of species distinction. In the early days some names were based on female adults of variable distinctiveness – but females are difficult to identify (Ekrem et al. 2010) and many of these names remain dubious. In Russia especially, a system based on larval morphology grew in parallel to the conventional adult-based system. The systems became reconciled with the studies that underlay the production of the Holarctic generic keys to Chironomidae, commencing notably with the larval volume (Wiederholm, 1983). Ever since Thienemann’s pioneering studies, it has been evident that the pupa, notably the cast skins (exuviae) provide a wealth of features that can aid in identification (e.g. Wiederholm, 1986). Furthermore, the pupae can be readily associated with name-bearing adults when a pharate (‘cloaked’) adult stage is visible within the pupa. Association of larvae with the name-bearing later stages has been much more difficult, time-consuming and fraught with risk of failure. Yet it is identification of the larval stage that is needed by most applied researchers due to the value of the immature stages of the family in aquatic monitoring for water quality, although the pupal stage also has advocates (reviewed by Sinclair & Gresens, 2008). Few use the adult stage for such purposes as their provenance and association with the water body can be verified only by emergence trapping, and sampling of adults lies outside regular aquatic monitoring protocols.
Resumo:
An FAO/IAEA Co-ordinated Research Project (CRP) on “Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade” was conducted from 2010 to 2015. As captured in the CRP title, the objective was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. The scientific output was the accurate alignment of biological species with taxonomic names; which led to the applied outcome of assisting FAO and IAEA Member States in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and the facilitation of international agricultural trade. Close to 50 researchers from over 20 countries participated in the CRP, using coordinated, multidisciplinary research to address, within an integrative taxonomic framework, cryptic species complexes of major tephritid pests. The following progress was made for the four complexes selected and studied: Anastrepha fraterculus complex – Eight morphotypes and their geographic and ecological distributions in Latin America were defined. The morphotypes can be considered as distinct biological species on the basis of differences in karyotype, sexual incompatibility, post-mating isolation, cuticular hydrocarbon, pheromone, and molecular analyses. Discriminative taxonomic tools using linear and geometric morphometrics of both adult and larval morphology were developed for this complex. Bactrocera dorsalis complex – Based on genetic, cytogenetic, pheromonal, morphometric, and behavioural data, which showed no or only minor variation between the Asian/African pest fruit flies Bactrocera dorsalis, B. papayae, B. philippinensis and B. invadens, the latter three species were synonymized with B. dorsalis. Of the five target pest taxa studied, only B. dorsalis and B. carambolae remain as scientifically valid names. Molecular and pheromone markers are now available to distinguish B. dorsalis from B. carambolae. Ceratitis FAR Complex (C. fasciventris, C. anonae, C. rosa) – Morphology, morphometry, genetic, genomic, pheromone, cuticular hydrocarbon, ecology, behaviour, and developmental physiology data provide evidence for the existence of five different entities within this fruit fly complex from the African region. These are currently recognised as Ceratitis anonae, C. fasciventris (F1 and F2), C. rosa and a new species related to C. rosa (R2). The biological limits within C. fasciventris (i.e. F1 and F2) are not fully resolved. Microsatellites markers and morphological identification tools for the adult males of the five different FAR entities were developed based on male leg structures. Zeugodacus cucurbitae (formerly Bactrocera (Zeugodacus) cucurbitae) – Genetic variability was studied among melon fly populations throughout its geographic range in Africa and the Asia/Pacific region and found to be limited. Cross-mating studies indicated no incompatibility or sexual isolation. Host preference and genetic studies showed no evidence for the existence of host races. It was concluded that the melon fly does not represent a cryptic species complex, neither with regard to geographic distribution nor to host range. Nevertheless, the higher taxonomic classification under which this species had been placed, by the time the CRP was started, was found to be paraphyletic; as a result the subgenus Zeugodacus was elevated to genus level.
Resumo:
In the design of tissue engineering scaffolds, design parameters including pore size, shape and interconnectivity, mechanical properties and transport properties should be optimized to maximize successful inducement of bone ingrowth. In this paper we describe a 3D micro-CT and pore partitioning study to derive pore scale parameters including pore radius distribution, accessible radius, throat radius, and connectivity over the pore space of the tissue engineered constructs. These pore scale descriptors are correlated to bone ingrowth into the scaffolds. Quantitative and visual comparisons show a strong correlation between the local accessible pore radius and bone ingrowth; for well connected samples a cutoff accessible pore radius of approximately 100 microM is observed for ingrowth. The elastic properties of different types of scaffolds are simulated and can be described by standard cellular solids theory: (E/E(0))=(rho/rho(s))(n). Hydraulic conductance and diffusive properties are calculated; results are consistent with the concept of a threshold conductance for bone ingrowth. Simple simulations of local flow velocity and local shear stress show no correlation to in vivo bone ingrowth patterns. These results demonstrate a potential for 3D imaging and analysis to define relevant pore scale morphological and physical properties within scaffolds and to provide evidence for correlations between pore scale descriptors, physical properties and bone ingrowth.
Resumo:
A number of series of poly(acrylic acids) (PAA) of differing end-groups and molecular mass were used to study the inhibition of calcium oxalate crystallization. The effects of the end-group on crystal speciation and morphology were significant and dramatic, with hexyl-isobutyrate end groups giving preferential formation of calcium oxalate dihydrate (COD) rather than the more stable calcium oxalate monohydrate (COM), while both more hydrophobic end-groups and less-hydrophobic end groups led predominantly to formation of the least thermodynamically stable form of calcium oxalate, calcium oxalate trihydrate. Conversely, molecular mass had little impact on calcium oxalate speciation or crystal morphology. It is probable that the observed effects are related to the rate of desorption of the PAA moiety from the crystal (lite) surfaces and that the results point to a major role for end-group as well as molecular mass in controlling desorption rate.
Resumo:
For fruit flies, fully ripe fruit is preferred for adult oviposition and is superior for offspring performance over unripe or ripening fruit. Because not all parts of a single fruit ripen simultaneously, the opportunity exists for adult fruit flies to selectively choose riper parts of a fruit for oviposition and such selection, if it occurs, could positively influence offspring performance. Such fine scale host variation is rarely considered in fruit fly ecology, however, especially for polyphagous species which are, by definition, considered to be generalist host users. Here we study the adult oviposition preference/larval performance relationship of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), a highly polyphagous pest species, at the “within-fruit” level to see if such a host use pattern occurs. We recorded the number of oviposition attempts that female flies made into three fruit portions (top, middle and bottom), and larval behavior and development within different fruit portions for ripening (color change) and fully-ripe mango, Mangifera indica L. (Anacardiaceae). Results indicate that female B. dorsalis do not oviposit uniformly across a mango fruit, but lay most often in the top (i.e., stalk end) of fruit and least in the bottom portion, regardless of ripening stage. There was no evidence of larval feeding site preference or performance (development time, pupal weight, percent pupation) being influenced by fruit portion, within or across the fruit ripening stages. There was, however, a very significant effect on adult emergence rate from pupae, with adult emergence rate from pupae from the bottom of ripening mango being approximately only 50% of the adult emergence rate from the top of ripening fruit, or from both the top and bottom of fully-ripe fruit. Differences in mechanical (firmness) and chemical (total soluble solids, titratable acidity, total non-structural carbohydrates) traits between different fruit portions were correlated with adult fruit utilisation. Our results support a positive adult preference/offspring performance relationship at within-fruit level for B. dorsalis. The fine level of host discrimination exhibited by B. dorsalis is at odds with the general perception that, as a polyphagous herbivore, the fly should show very little discrimination in its host use behavior.
Resumo:
Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.
Resumo:
BACKGROUND: Trochlear dysplasia is suspected to have a genetic basis and causes recurrent patellar instability due to insufficient anatomical geometry. Numerous studies about trochlear morphology and the optimal surgical treatment have been carried out, but no attention has been paid to the corresponding patellar morphology.----- ----- PURPOSE: The aim of this study was the evaluation of the patellar morphology in normal and trochlear dysplastic knees. ----- ----- STUDY DESIGN: Biometric analysis. ----- ----- METHODS: Twenty two patellae with underlying trochlear dysplasia (study group--SG) were compared with 22 matched knees with normal trochlear shape (control group--CG) on transverse and sagittal MRI slices. We compared transverse diameter, cartilaginous thickness, Wiberg-index and -angle, length and radius of lateral and medial facet, patellar shape and angle, retropatellar length, and type of trochlear dysplasia. For statistical analysis we used the Wilcoxon signed ranks test. ----- ----- RESULTS: The transverse and sagittal diameter, mean length of medial patellar facet, and mean cartilaginous and subchondral Wiberg-index showed statistical differences between the two groups. ----- ----- CONCLUSIONS: Although the insufficient trochlear depth and decreased lateral trochlear slope are responsible for patellofemoral instability, the patella shows morphological changes in trochlear dysplastic knees. Its overall size and the medial facet are smaller. Although the femoral sulcus angle is larger, the Wiberg-angle and -index are equal to the control group. This may indicate that the patellar morphology may not be a result of missing medial patellofemoral pressure in trochlear dysplastic knees, but a decreased medial patellofemoral traction. This seems to be caused by hypotrophic medial patellofemoral restraints in combination with an increased lateral patellar tilt, both resulting in a decreased tension onto the medial patella facet. Whether there is a genetic component to the patellar morphology remains open.
Resumo:
Mixed use typologies and pedestrian networks are two strategies commonly applied in design of the contemporary city. These approaches, aimed towards the creation of a more sustainalble urban environment, have their roots in the traditional, pre-industrial towns; they characterize urban form, articulating the tension between privaate and public realms through a series of typological variations as well as stimulating commercial activity in the city centre. Arcades, loggias and verandas are just some of the elements which can mediate this tension. Historically they have defined physical and social spaces with particular character; in the contemporary city these features are applied to deform the urban form and create a porous, dynamic morphology. This paper, comparing case studies from Italy, Japan and Australia, investigates how the design of the transition zone can define hybrid pedestrian networks, where a clear distinction between the public and private realms is no longer applicable. Pedestrians use the city in a dynamic way, combining trajectories on the public street with ones on the fringe or inside of the private built environment. In some cases, cities offer different pedestrian network possibilities at different times, as the commercial precints are subject to variations in accessibility across various timeframes. These walkable systems have an impact on the urban form and identity of places, redefining typologies and requiring an in depth analysis through plan, section and elevation diagrams.