23 resultados para jaw cyst
Resumo:
In the present study, variation in the morphology of the lower pharyngeal element between two Sicilian populations of the rainbow wrasse Coris julis has been explored by the means of traditional morphometrics for size and geometric morphometrics for shape. Despite close geographical distance and probable high genetic flow between the populations, statistically significant differences have been found both for size and shape. In fact, one population shows a larger lower pharyngeal element that has a larger central tooth. Compared to the other population, this population also has medially enlarged lower pharyngeal jaws with a more pronounced convexity of the medial-posterior margin. The results are discussed in the light of a possible more pronounced durophagy of this population.
Resumo:
Gnathodiaphyseal dysplasia (GDD) is a rare autosomal dominant condition characterized by bone fragility, irregular bone mineral density (BMD) and fibro-osseous lesions in the skull and jaw. Mutations in Anoctamin-5 (ANO5) have been identified in some cases. We aimed to identify the causative mutation in a family with features of GDD but no mutation in ANO5, using whole exome capture and massive parallel sequencing (WES). WES of two affected individuals (a mother and son) and the mother's unaffected parents identified a mutation in the C-propeptide cleavage site of COL1A1. Similar mutations have been reported in individuals with osteogenesis imperfecta (OI) and paradoxically increased BMD. C-propeptide cleavage site mutations in COL1A1 may not only cause 'high bone mass OI', but also the clinical features of GDD, specifically irregular sclerotic BMD and fibro-osseous lesions in the skull and jaw. GDD patients negative for ANO5 mutations should be assessed for mutations in type I collagen C-propeptide cleavage sites.
Resumo:
Quantitative Microbial Risk Assessment (QMRA) analysis was used to quantify the risk of infection associated with the exposure to pathogens from potable and non-potable uses of roof-harvested rainwater in South East Queensland (SEQ). A total of 84 rainwater samples were analysed for the presence of faecal indicators (using culture based methods) and zoonotic bacterial and protozoan pathogens using binary and quantitative PCR (qPCR). The concentrations of Salmonella invA, and Giardia lamblia β-giradin genes ranged from 65-380 genomic units/1000 mL and 9-57 genomic units/1000 mL of water, respectively. After converting gene copies to cell/cyst number, the risk of infection from G. lamblia and Salmonella spp. associated with the use of rainwater for bi-weekly garden hosing was calculated to be below the threshold value of 1 extra infection per 10,000 persons per year. However, the estimated risk of infection from drinking the rainwater daily was 44-250 (for G. lamblia) and 85-520 (for Salmonella spp.) infections per 10,000 persons per year. Since this health risk seems higher than that expected from the reported incidences of gastroenteritis, the assumptions used to estimate these infection risks are critically discussed. Nevertheless, it would seem prudent to disinfect rainwater for potable use.
Resumo:
The purpose of this work is to validate and automate the use of DYNJAWS; a new component module (CM) in the BEAMnrc Monte Carlo (MC) user code. The DYNJAWS CM simulates dynamic wedges and can be used in three modes; dynamic, step-and-shoot and static. The step-and-shoot and dynamic modes require an additional input file defining the positions of the jaw that constitutes the dynamic wedge, at regular intervals during its motion. A method for automating the generation of the input file is presented which will allow for the more efficient use of the DYNJAWS CM. Wedged profiles have been measured and simulated for 6 and 10 MV photons at three field sizes (5 cm x 5 cm , 10 cm x10 cm and 20 cm x 20 cm), four wedge angles (15, 30, 45 and 60 degrees), at dmax and at 10 cm depth. Results of this study show agreement between the measured and the MC profiles to within 3% of absolute dose or 3 mm distance to agreement for all wedge angles at both energies and depths. The gamma analysis suggests that dynamic mode is more accurate than the step-and-shoot mode. The DYNJAWS CM is an important addition to the BEAMnrc code and will enable the MC verification of patient treatments involving dynamic wedges.
Resumo:
Facial expression is one of the main issues of face recognition in uncontrolled environments. In this paper, we apply the probabilistic linear discriminant analysis (PLDA) method to recognize faces across expressions. Several PLDA approaches are tested and cross-evaluated on the Cohn-Kanade and JAFFE databases. With less samples per gallery subject, high recognition rates comparable to previous works have been achieved indicating the robustness of the approaches. Among the approaches, the mixture of PLDAs has demonstrated better performances. The experimental results also indicate that facial regions around the cheeks, eyes, and eyebrows are more discriminative than regions around the mouth, jaw, chin, and nose.
Resumo:
Endemic Burkitt lymphoma (BL) is etiologically associated with Epstein-Barr virus (EBV) and ecologically linked to Plasmodium falciparum malaria. However, these infections imperfectly correlate with BL epidemiology. To obtain recent epidemiological data, we studied district- and county-specific BL incidence and standardized incidence ratios using data collected from 1997 through 2006 at Lacor Hospital in northern Uganda, where studies were last done more than 30 years ago. Among 500 patients, median age was 6 years (inter-quartile range 5-8) and male-to-female ratio was 1.8:1. Among those known, most presented with abdominal (56%, M: F 1.4:1) vs. only facial tumors (35%, M: F 3.0:1). Abdominal tumors occurred in older (mean age: 7.0 vs. 6.0 years; p<0.001) and more frequently in female children (68% vs. 50%; OR 2.2, 95% CI 1.5-3.5). The age-standardized incidence was 2.4 per 100,000, being 0.6 in 1-4 year olds, 4.1 in 5-9 year olds and 2.8 in 10-14 year olds and varied 3-4-fold across districts. The incidence was lower in districts that were far from Lacor and higher in districts that were close to Lacor. While districts close to Lacor were also more urbanized, the incidence was higher in the nearby perirural areas. We highlight high BL incidence and geographic variation in neighboring districts in northern Uganda. While distance from Lacor clearly influenced the patterns, the incidence was lower in municipal than in surrounding rural areas. Jaw tumors were characterized by young age and male gender, but presentation has shifted away from facial to mostly abdominal. Keywords: Africa, cancer, malaria, Epstein-Barr virus, clustering, epidemiology
Resumo:
The effects of tumour motion during radiation therapy delivery have been widely investigated. Motion effects have become increasingly important with the introduction of dynamic radiotherapy delivery modalities such as enhanced dynamic wedges (EDWs) and intensity modulated radiation therapy (IMRT) where a dynamically collimated radiation beam is delivered to the moving target, resulting in dose blurring and interplay effects which are a consequence of the combined tumor and beam motion. Prior to this work, reported studies on the EDW based interplay effects have been restricted to the use of experimental methods for assessing single-field non-fractionated treatments. In this work, the interplay effects have been investigated for EDW treatments. Single and multiple field treatments have been studied using experimental and Monte Carlo (MC) methods. Initially this work experimentally studies interplay effects for single-field non-fractionated EDW treatments, using radiation dosimetry systems placed on a sinusoidaly moving platform. A number of wedge angles (60º, 45º and 15º), field sizes (20 × 20, 10 × 10 and 5 × 5 cm2), amplitudes (10-40 mm in step of 10 mm) and periods (2 s, 3 s, 4.5 s and 6 s) of tumor motion are analysed (using gamma analysis) for parallel and perpendicular motions (where the tumor and jaw motions are either parallel or perpendicular to each other). For parallel motion it was found that both the amplitude and period of tumor motion affect the interplay, this becomes more prominent where the collimator tumor speeds become identical. For perpendicular motion the amplitude of tumor motion is the dominant factor where as varying the period of tumor motion has no observable effect on the dose distribution. The wedge angle results suggest that the use of a large wedge angle generates greater dose variation for both parallel and perpendicular motions. The use of small field size with a large tumor motion results in the loss of wedged dose distribution for both parallel and perpendicular motion. From these single field measurements a motion amplitude and period have been identified which show the poorest agreement between the target motion and dynamic delivery and these are used as the „worst case motion parameters.. The experimental work is then extended to multiple-field fractionated treatments. Here a number of pre-existing, multiple–field, wedged lung plans are delivered to the radiation dosimetry systems, employing the worst case motion parameters. Moreover a four field EDW lung plan (using a 4D CT data set) is delivered to the IMRT quality control phantom with dummy tumor insert over four fractions using the worst case parameters i.e. 40 mm amplitude and 6 s period values. The analysis of the film doses using gamma analysis at 3%-3mm indicate the non averaging of the interplay effects for this particular study with a gamma pass rate of 49%. To enable Monte Carlo modelling of the problem, the DYNJAWS component module (CM) of the BEAMnrc user code is validated and automated. DYNJAWS has been recently introduced to model the dynamic wedges. DYNJAWS is therefore commissioned for 6 MV and 10 MV photon energies. It is shown that this CM can accurately model the EDWs for a number of wedge angles and field sizes. The dynamic and step and shoot modes of the CM are compared for their accuracy in modelling the EDW. It is shown that dynamic mode is more accurate. An automation of the DYNJAWS specific input file has been carried out. This file specifies the probability of selection of a subfield and the respective jaw coordinates. This automation simplifies the generation of the BEAMnrc input files for DYNJAWS. The DYNJAWS commissioned model is then used to study multiple field EDW treatments using MC methods. The 4D CT data of an IMRT phantom with the dummy tumor is used to produce a set of Monte Carlo simulation phantoms, onto which the delivery of single field and multiple field EDW treatments is simulated. A number of static and motion multiple field EDW plans have been simulated. The comparison of dose volume histograms (DVHs) and gamma volume histograms (GVHs) for four field EDW treatments (where the collimator and patient motion is in the same direction) using small (15º) and large wedge angles (60º) indicates a greater mismatch between the static and motion cases for the large wedge angle. Finally, to use gel dosimetry as a validation tool, a new technique called the „zero-scan method. is developed for reading the gel dosimeters with x-ray computed tomography (CT). It has been shown that multiple scans of a gel dosimeter (in this case 360 scans) can be used to reconstruct a zero scan image. This zero scan image has a similar precision to an image obtained by averaging the CT images, without the additional dose delivered by the CT scans. In this investigation the interplay effects have been studied for single and multiple field fractionated EDW treatments using experimental and Monte Carlo methods. For using the Monte Carlo methods the DYNJAWS component module of the BEAMnrc code has been validated and automated and further used to study the interplay for multiple field EDW treatments. Zero-scan method, a new gel dosimetry readout technique has been developed for reading the gel images using x-ray CT without losing the precision and accuracy.
Resumo:
The purpose of this paper is to investigate the essential elements of sport management in Australia in the 1990's. The essential purpose is to view these elements from a legal perspective. In the past 12 months there has been at least three conferences in the sports law area. The majority of this paper has been allocated to the area of legal liability, especially the legal relationships evolving between the player and his co-participant, the player and his club, the player and his coach, and the duties and liabilities of the coach and the club. The area of insurance will also be discussed as it is a vital element in protecting the players, coaches and clubs in the event of any litigation. A well publicised case was that of Rogers v Bugden where the plaintiff Steven Rogers, who was a first grade rugby league football player for Cronulla, suffered a broken jaw and sued his co-participant Mark Bugden and Bugden's employer Canterbury/Bankstown District Rugby League Football Club. It was held that there was a contract of employment and Canterbury/Bankstown was found to be vicariously liable and was ordered to pay Rogers the sum of $68,154.00. The legal actions in tort and negligence are increasing. Sports managers will need to investigate thoroughly the protection available for their clients.
Resumo:
Introduction: Recent advances in the planning and delivery of radiotherapy treatments have resulted in improvements in the accuracy and precision with which therapeutic radiation can be administered. As the complexity of the treatments increases it becomes more difficult to predict the dose distribution in the patient accurately. Monte Carlo (MC) methods have the potential to improve the accuracy of the dose calculations and are increasingly being recognised as the ‘gold standard’ for predicting dose deposition in the patient [1]. This project has three main aims: 1. To develop tools that enable the transfer of treatment plan information from the treatment planning system (TPS) to a MC dose calculation engine. 2. To develop tools for comparing the 3D dose distributions calculated by the TPS and the MC dose engine. 3. To investigate the radiobiological significance of any errors between the TPS patient dose distribution and the MC dose distribution in terms of Tumour Control Probability (TCP) and Normal Tissue Complication Probabilities (NTCP). The work presented here addresses the first two aims. Methods: (1a) Plan Importing: A database of commissioned accelerator models (Elekta Precise and Varian 2100CD) has been developed for treatment simulations in the MC system (EGSnrc/BEAMnrc). Beam descriptions can be exported from the TPS using the widespread DICOM framework, and the resultant files are parsed with the assistance of a software library (PixelMed Java DICOM Toolkit). The information in these files (such as the monitor units, the jaw positions and gantry orientation) is used to construct a plan-specific accelerator model which allows an accurate simulation of the patient treatment field. (1b) Dose Simulation: The calculation of a dose distribution requires patient CT images which are prepared for the MC simulation using a tool (CTCREATE) packaged with the system. Beam simulation results are converted to absolute dose per- MU using calibration factors recorded during the commissioning process and treatment simulation. These distributions are combined according to the MU meter settings stored in the exported plan to produce an accurate description of the prescribed dose to the patient. (2) Dose Comparison: TPS dose calculations can be obtained using either a DICOM export or by direct retrieval of binary dose files from the file system. Dose difference, gamma evaluation and normalised dose difference algorithms [2] were employed for the comparison of the TPS dose distribution and the MC dose distribution. These implementations are spatial resolution independent and able to interpolate for comparisons. Results and Discussion: The tools successfully produced Monte Carlo input files for a variety of plans exported from the Eclipse (Varian Medical Systems) and Pinnacle (Philips Medical Systems) planning systems: ranging in complexity from a single uniform square field to a five-field step and shoot IMRT treatment. The simulation of collimated beams has been verified geometrically, and validation of dose distributions in a simple body phantom (QUASAR) will follow. The developed dose comparison algorithms have also been tested with controlled dose distribution changes. Conclusion: The capability of the developed code to independently process treatment plans has been demonstrated. A number of limitations exist: only static fields are currently supported (dynamic wedges and dynamic IMRT will require further development), and the process has not been tested for planning systems other than Eclipse and Pinnacle. The tools will be used to independently assess the accuracy of the current treatment planning system dose calculation algorithms for complex treatment deliveries such as IMRT in treatment sites where patient inhomogeneities are expected to be significant. Acknowledgements: Computational resources and services used in this work were provided by the HPC and Research Support Group, Queensland University of Technology, Brisbane, Australia. Pinnacle dose parsing made possible with the help of Paul Reich, North Coast Cancer Institute, North Coast, New South Wales.
Resumo:
Background: Bone metastases are a significant and undertreated clinical problem in patients with advanced lung cancer. Design: We reviewed the incidence of bone metastases and skeletal-related events (SREs) in patients with lung cancer and examined the burden on patients' lives and on health care systems. Available therapies to improve survival and lessen the impact of SREs on quality of life (QoL) were also investigated. Results: Bone metastases are common in lung cancer; however, owing to short survival times, data on the incidences of SREs are limited. As with other cancers, the costs associated with treating SREs in lung cancer are substantial. Bisphosphonates reduce the frequency of SREs and improve measures of pain and QoL in patients with lung cancer; however, nephrotoxicity is a common complication of therapy. Denosumab, a recently approved bone-targeted therapy, is superior to zoledronic acid in increasing the time to first on-study SRE in patients with solid tumours, including lung cancer. Additional roles of bone-targeted therapies beyond the prevention of SREs are under investigation. Conclusions: With increasing awareness of the consequences of SREs, bone-targeted therapies may play a greater role in the management of patients with lung cancer, with the aim of delaying disease progression and preserving QoL. © The Author 2012. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
Resumo:
HBO's Hemingway and Gellhorn (Philip Kaufman, 2012), broadcast in May on US television and starring Nicole Kidman as the pioneering female foreign correspondent, hasn't been well reviewed by the majority of critics. Variety described the biopic (with Clive Owen as Hemingway) as “swollen and heavy-handed”, while the Huffington Post declared it an “expensive misfire … a gigantic missed opportunity, a jaw-droppingly trying waste of time”. Regardless of whether such criticisms are fair—as this essay went to press I had been unable to see the film, so I cannot judge one way or the other—Hemingway and Gellhorn should be viewed as a significant addition to the filmography of journalism, retrieving from history as it does the achievements of one of the most significant of the early female practitioners. Gellhorn was a pioneer in a patriarchal press universe, a foreign and war correspondent at a time when this branch of the profession was seen very much as man's work. She covered the Spanish Civil War and the Second World War, and with just as much viscerality as any man.
Resumo:
Introduction The consistency of measuring small field output factors is greatly increased by reporting the measured dosimetric field size of each factor, as opposed to simply stating the nominal field size [1] and therefore requires the measurement of cross-axis profiles in a water tank. However, this makes output factor measurements time consuming. This project establishes at which field size the accuracy of output factors are not affected by the use of potentially inaccurate nominal field sizes, which we believe establishes a practical working definition of a ‘small’ field. The physical components of the radiation beam that contribute to the rapid change in output factor at small field sizes are examined in detail. The physical interaction that dominates the cause of the rapid dose reduction is quantified, and leads to the establishment of a theoretical definition of a ‘small’ field. Methods Current recommendations suggest that radiation collimation systems and isocentre defining lasers should both be calibrated to permit a maximum positioning uncertainty of 1 mm [2]. The proposed practical definition for small field sizes is as follows: if the output factor changes by ±1.0 % given a change in either field size or detector position of up to ±1 mm then the field should be considered small. Monte Carlo modelling was used to simulate output factors of a 6 MV photon beam for square fields with side lengths from 4.0 to 20.0 mm in 1.0 mm increments. The dose was scored to a 0.5 mm wide and 2.0 mm deep cylindrical volume of water within a cubic water phantom, at a depth of 5 cm and SSD of 95 cm. The maximum difference due to a collimator error of ±1 mm was found by comparing the output factors of adjacent field sizes. The output factor simulations were repeated 1 mm off-axis to quantify the effect of detector misalignment. Further simulations separated the total output factor into collimator scatter factor and phantom scatter factor. The collimator scatter factor was further separated into primary source occlusion effects and ‘traditional’ effects (a combination of flattening filter and jaw scatter etc.). The phantom scatter was separated in photon scatter and electronic disequilibrium. Each of these factors was plotted as a function of field size in order to quantify how each affected the change in small field size. Results The use of our practical definition resulted in field sizes of 15 mm or less being characterised as ‘small’. The change in field size had a greater effect than that of detector misalignment. For field sizes of 12 mm or less, electronic disequilibrium was found to cause the largest change in dose to the central axis (d = 5 cm). Source occlusion also caused a large change in output factor for field sizes less than 8 mm. Discussion and conclusions The measurement of cross-axis profiles are only required for output factor measurements for field sizes of 15 mm or less (for a 6 MV beam on Varian iX linear accelerator). This is expected to be dependent on linear accelerator spot size and photon energy. While some electronic disequilibrium was shown to occur at field sizes as large as 30 mm (the ‘traditional’ definition of small field [3]), it has been shown that it does not cause a greater change than photon scatter until a field size of 12 mm, at which point it becomes by far the most dominant effect.
Resumo:
Establishing the sheep model for translational research of mandible (jaw) segmental defect regeneration. Providing a framework from which additional experimentation and evaluation of novel tissue engineered constructs may be undertaken, compared and collated. For current and future novel approaches to mandible segmental defect reconstruction that may be transferable to the human condition and, ultimately, the operative table.