297 resultados para host species


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Psittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ~2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94% genome-wide sequence identity as a strain demarcation threshold, with isolates sharing > 94% identity belonging to the same strain, and strain subtypes sharing> 98% identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed. © 2011 SGM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infections (UTIs). Little is known about interactions between UPEC and the inflammasome, a key innate immune pathway. Here we show that UPEC strains CFT073 and UTI89 trigger inflammasome activation and lytic cell death in human macrophages. Several other UPEC strains, including two multidrug-resistant ST131 isolates, did not kill macrophages. In mouse macrophages, UTI89 triggered cell death only at a high multiplicity of infection, and CFT073-mediated inflammasome responses were completely NLRP3-dependent. Surprisingly, CFT073- and UTI89-mediated responses only partially depended on NLRP3 in human macrophages. In these cells, NLRP3 was required for interleukin-1β (IL-1β) maturation, but contributed only marginally to cell death. Similarly, caspase-1 inhibition did not block cell death in human macrophages. In keeping with such differences, the pore-forming toxin α-hemolysin mediated a substantial proportion of CFT073-triggered IL-1β secretion in mouse but not human macrophages. There was also a more substantial α-hemolysin-independent cell death response in human vs. mouse macrophages. Thus, in mouse macrophages, CFT073-triggered inflammasome responses are completely NLRP3-dependent, and largely α-hemolysin-dependent. In contrast, UPEC activates an NLRP3-independent cell death pathway and an α-hemolysin-independent IL-1β secretion pathway in human macrophages. This has important implications for understanding UTI in humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The common brown leafhopper Orosius orientalis (Hemiptera: Cicadellidae) is a polyphagous vector of a range of economically important pathogens, including phytoplasmas and viruses, which infect a diverse range of crops. Studies on the plant penetration behaviour by O. orientalis were conducted using the electrical penetration graph (EPG) technique to assist in the characterisation of pathogen acquisition and transmission. EPG waveforms representing different probing activities were acquired from adult O. orientalis probing in planta, using two host species, tobacco Nicotiana tabacum and bean Phaseolus vulgaris, and in vitro using a simple sucrose-based artificial diet. Five waveforms (O1–O5) were evident when O. orientalis fed on bean, whereas only four waveforms (O1–O4) and three waveforms (O1–O3) were observed when the leafhopper fed on tobacco and on the artificial diet, respectively. Both the mean duration of each waveform and waveform type differed markedly depending on the food substrate. Waveform O4 was not observed on the artificial diet and occurred relatively rarely on tobacco plants when compared with bean plants. Waveform O5 was only observed with leafhoppers probing on beans. The attributes of the waveforms and comparative analyses with previously published Hemipteran data are presented and discussed, but further characterisation studies will be needed to confirm our suggestions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Insect learning can change the preferences an egg laying female displays towards different host plant species. Current hypotheses propose that learning may be advantageous in adult host selection behaviour through improved recognition, accuracy or selectivity in foraging. In this paper, we present a hypothesis for when learning can be advantageous without such improvements in adult host foraging. Specifically, that learning can be an advantageous strategy for egg laying females when larvae must feed on more than one plant in order to complete development, if the fitness of larvae is reduced when they switch to a different host species. Here, larvae benefit from developing on the most abundant host species, which is the most likely choice of host for an adult insect which increases its preference for a host species through learning. The hypothesis is formalised with a mathematical model and we provide evidence from studies on the behavioural ecology of a number of insect species which demonstrate that the assumptions of this hypothesis may frequently be fulfilled in nature. We discuss how multiple mechanisms may convey advantages in insect learning and that benefits to larval development, which have so far been overlooked, should be considered in explanations for the widespread occurrence of learning.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The host location behaviour of foraging caterpillars has received little attention, despite the wealth of theoretical and empirical studies that have been directed at this behavioural trait in adult Lepidoptera. Here, we study caterpillars of the moth Heliothis punctifera Walker (Lepidoptera: Noctuidae), which inhabits the arid inland desert areas of Australia. Caterpillars of this species consume many flowerheads before completing development and can be observed moving across the sand in search of new hosts. Consequently, if host location behaviour favours attraction to certain plant species, it might be expected to influence the distribution and abundance of caterpillars in the field. We present field data showing that H. punctifera caterpillars are unevenly distributed throughout mixed patches of two of its host species, with a higher abundance on Senecio gregorii F. Muell., the annual yellow top, compared to Myriocephalus stuartii (F. Muell. & Sond.) Benth., the poached egg daisy (both Asteraceae). Using laboratory studies, we test whether this distribution may, in part, be due to host location behaviour of caterpillars. Our results show that caterpillars exhibit a preference for locating S. gregorii in their pre- and post-contact foraging behaviour. In addition, our results provide evidence that feeding history plays a role in host location behaviour in this insect. We propose that key features of the desert environment and the ecology of H. punctifera would favour adaptations to host location behaviour by immatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heliothine moths (Lepidoptera: Heliothinae) include some of the world's most devastating pest species. Whereas the majority of nonpest heliothinae specialize on a single plant family, genus, or species, pest species are highly polyphagous, with populations often escalating in size as they move from one crop species to another. Here, we examine the current literature on heliothine host-selection behavior with the aim of providing a knowledge base for research scientists and pest managers. We review the host relations of pest heliothines, with a particular focus on Helicoverpa armigera (Hubner), the most economically damaging of all heliothine species. We then consider the important question of what constitutes a host plant in these moths, and some of the problems that arise when trying to determine host plant status from empirical studies on host use. The top six host plant families in the two main Australian pest species (H. armigera and Helicoverpa punctigera Wallengren) are the same and the top three (Asteraceae, Fabaceae, and Malvaceae) are ranked the same (in terms of the number of host species on which eggs or larvae have been identified), suggesting that these species may use similar cues to identify their hosts. In contrast, for the two key pest heliothines in the Americas, the Fabaceae contains approximate to 1/3 of hosts for both. For Helicoverpa zea (Boddie), the remaining hosts are more evenly distributed, with Solanaceae next, followed by Poaceae, Asteraceae, Malvaceae, and Rosaceae. For Heliothis virescens (F.), the next highest five families are Malvaceae, Asteraceae, Solanaceae, Convolvulaceae, and Scrophulariaceae. Again there is considerable overlap in host use at generic and even species level. H. armigera is the most widely distributed and recorded from 68 plant families worldwide, but only 14 families are recorded as a containing a host in all geographic areas. A few crop hosts are used throughout the range as expected, but in some cases there are anomalies, perhaps because host plant relation studies are not comparable. Studies on the attraction of heliothines to plant odors are examined in the context of our current understanding of insect olfaction, with the aim of better understanding the connection between odor perception and host choice. Finally, we discuss research into sustainable management of pest heliothines using knowledge of heliothine behavior and ecology. A coordinated international research effort is needed to advance our knowledge on host relations in widely distributed polyphagous species instead of the localized, piecemeal approaches to understanding these insects that has been the norm to date.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of upper and lower respiratory tract infections. In more recent years there has been increasing evidence to suggest a link between C. pneumoniae and chronic diseases in humans, including atherosclerosis, stroke and Alzheimer’s disease. C. pneumoniae human strains show little genetic variation, indicating that the human-derived strain originated from a common ancestor in the recent past. Despite extensive information on the genetics and morphology processes of the human strain, knowledge concerning many other hosts (including marsupials, amphibians, reptiles and equines) remains virtually unexplored. The koala (Phascolarctos cinereus) is a native Australian marsupial under threat due to habitat loss, predation and disease. Koalas are very susceptible to chlamydial infections, most commonly affecting the conjunctiva, urogenital tract and/or respiratory tract. To address this gap in the literature, the present study (i) provides a detailed description of the morphologic and genomic architecture of the C. pneumoniae koala (and human) strain, and shows that the koala strain is microscopically, developmentally and genetically distinct from the C. pneumoniae human strain, and (ii) examines the genetic relationship of geographically diverse C. pneumoniae isolates from human, marsupial, amphibian, reptilian and equine hosts, and identifies two distinct lineages that have arisen from animal-to-human cross species transmissions. Chapter One of this thesis explores the scientific problem and aims of this study, while Chapter Two provides a detailed literature review of the background in this field of work. Chapter Three, the first results chapter, describes the morphology and developmental stages of C. pneumoniae koala isolate LPCoLN, as revealed by fluorescence and transmission electron microscopy. The profile of this isolate, when cultured in HEp-2 human epithelial cells, was quite different to the human AR39 isolate. Koala LPCoLN inclusions were larger; the elementary bodies did not have the characteristic pear-shaped appearance, and the developmental cycle was completed within a shorter period of time (as confirmed by quantitative real-time PCR). These in vitro findings might reflect biological differences between koala LPCoLN and human AR39 in vivo. Chapter Four describes the complete genome sequence of the koala respiratory pathogen, C. pneumoniae LPCoLN. This is the first animal isolate of C. pneumoniae to be fully-sequenced. The genome sequence provides new insights into genomic ‘plasticity’ (organisation), evolution and biology of koala LPCoLN, relative to four complete C. pneumoniae human genomes (AR39, CWL029, J138 and TW183). Koala LPCoLN contains a plasmid that is not shared with any of the human isolates, there is evidence of gene loss in nucleotide salvage pathways, and there are 10 hot spot genomic regions of variation that were previously not identified in the C. pneumoniae human genomes. Sequence (partial-length) from a second, independent, wild koala isolate (EBB) at several gene loci confirmed that the koala LPCoLN isolate was representative of a koala C. pneumoniae strain. The combined sequence data provides evidence that the C. pneumoniae animal (koala LPCoLN) genome is ancestral to the C. pneumoniae human genomes and that human infections may have originated from zoonotic infections. Chapter Five examines key genome components of the five C. pneumoniae genomes in more detail. This analysis reveals genomic features that are shared by and/or contribute to the broad ecological adaptability and evolution of C. pneumoniae. This analysis resulted in the identification of 65 gene sequences for further analysis of intraspecific variation, and revealed some interesting differences, including fragmentation, truncation and gene decay (loss of redundant ancestral traits). This study provides valuable insights into metabolic diversity, adaptation and evolution of C. pneumoniae. Chapter Six utilises a subset of 23 target genes identified from the previous genomic comparisons and makes a significant contribution to our understanding of genetic variability among C. pneumoniae human (11) and animal (6 amphibian, 5 reptilian, 1 equine and 7 marsupial hosts) isolates. It has been shown that the animal isolates are genetically diverse, unlike the human isolates that are virtually clonal. More convincing evidence that C. pneumoniae originated in animals and recently (in the last few hundred thousand years) crossed host species to infect humans is provided in this study. It is proposed that two animal-to-human cross species events have occurred in the context of the results, one evident by the nearly clonal human genotype circulating in the world today, and the other by a more animal-like genotype apparent in Indigenous Australians. Taken together, these data indicate that the C. pneumoniae koala LPCoLN isolate has morphologic and genomic characteristics that are distinct from the human isolates. These differences may affect the survival and activity of the C. pneumoniae koala pathogen in its natural host, in vivo. This study, by utilising the genetic diversity of C. pneumoniae, identified new genetic markers for distinguishing human and animal isolates. However, not all C. pneumoniae isolates were genetically diverse; in fact, several isolates were highly conserved, if not identical in sequence (i.e. Australian marsupials) emphasising that at some stage in the evolution of this pathogen, there has been an adaptation/s to a particular host, providing some stability in the genome. The outcomes of this study by experimental and bioinformatic approaches have significantly enhanced our knowledge of the biology of this pathogen and will advance opportunities for the investigation of novel vaccine targets, antimicrobial therapy, or blocking of pathogenic pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract. 1. Learning may enable insects to obtain nectar from flowers more efficiently. Learning in nectar foraging has been shown primarily in studies of bees and butterflies. Here, learning is demonstrated in the nectar foraging behaviour of a noctuid moth, Helicoverpa armigera. 2. The present studies show that: (1) previous experience with a flowering host species increases the probability of that species being selected for nectar foraging, and (2) previous experience of a particular flower type (food source at bottom or top of the corolla tube) increases the likelihood of the food source being found when that flower type is being searched. 3. The implications of these findings for understanding the pattern of oviposition observed in wild populations of this important pest species are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent experimental evidence has shown that learning occurs in the host selection behaviour of Helicoverpa armigera (Hübner), one of the world‘s most important agricultural pests. This paper discusses how the occurrence of learning changes our understanding of the host selection behaviour of this polyphagous moth. Host preferences determined from previous laboratory studies may be vastly different from preferences exhibited by moths in the field, where the abundance of particular hosts may be more likely to determine host preference. In support of this prediction, a number of field studies have shown that the ‘attractiveness’ of different hosts for H. armigera oviposition may depend on the relative abundance of these host species. Insect learning may play a fundamental role in the design and application of present and future integrated pest management strategies such as the use of host volatiles, trap crops and resistant crop varieties for monitoring and controlling this important pest species

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wolbachia pipientis is an endosymbiotic bacterium present in diverse insect species. Although it is well studied for its dramatic effects on host reproductive biology, little is known about its effects on other aspects of host biology, despite its presence in a wide array of host tissues. This study examined the effects of three Wolbachia strains on two different Drosophila species, using a laboratory performance assay for insect locomotion in response to olfactory cues. The results demonstrate that Wolbachia infection can have significant effects on host responsiveness that vary with respect to the Wolbachia strain-host species combination. The wRi strain, native to Drosophila simulans, increases the basal activity level of the host insect as well as its responsiveness to food cues. In contrast, the wMel strain and the virulent wMelPop strain, native to Drosophila melanogaster, cause slight decreases in responsiveness to food cues but do not alter basal activity levels in the host. Surprisingly, the virulent wMelPop strain has very little impact on host responsiveness in D. simulans. This novel strain-host relationship was artificially created previously by transinfection. These findings have implications for understanding the evolution and spread of Wolbachia infections in wild populations and for Wolbachia-based vector-borne disease control strategies currently being developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections. Recent studies have demonstrated that UPEC can invade and replicate within epithelial cells, suggesting that this bacterial pathogen may occupy an intracellular niche within the host. Given that many intracellular pathogens target macrophages, we assessed the interactions between UPEC and macrophages. Colonization of the mouse bladder by UPEC strain CFT073 resulted in increased expression of myeloid-restricted genes, consistent with the recruitment of inflammatory macrophages to the site of infection. In in vitro assays, CFT073 was able to survive within primary mouse bone marrow-derived macrophages (BMM) up to 24 h post-infection. Three additional well-characterized clinical UPEC isolates associated with distinct UTI symptomatologies displayed variable long-term survival within BMM. UPEC strains UTI89 and VR50, originally isolated from patients with cystitis and asymptomatic bacteriuria respectively, showed elevated bacterial loads in BMM at 24 h post-infection as compared to CFT073 and the asymptomatic bacteriuria strain 83972. These differences did not correlate with differential effects on macrophage survival or initial uptake of bacteria. E. coli UTI89 localized to a Lamp1+ vesicular compartment within BMM. In contrast to survival within mouse BMM, intracellular bacterial loads of VR50 were low in both human monocyte-derived macrophages (HMDM) and in human T24 bladder epithelial cells. Collectively, these data suggest that some UPEC isolates may subvert macrophage anti-microbial pathways, and that host species differences may impact on intracellular UPEC survival.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oribius species are small flightless weevils endemic to the island of New Guinea and far northern Cape York, Australia. The adults feed externally on leaves, developing fruit and green bark, but their impact as pests and general host use patterns are poorly known. Working in Eastern Highlands Province, Papua New Guinea, we carried out structured host use surveys, farmer surveys, shade-house growth trials, and on-farm and on-station impact trials to: (i) estimate the host range of the local Oribius species; (ii) understand adult daily activity patterns; (iii) elucidate feeding habits of the soil dwelling larvae; and (iv) quantify the impacts of adult feeding damage. Oribius inimicus and O. destructor accounted for nearly all the Oribius species encountered locally: of these two O. inimicus was the most abundant. Weevils were collected from 31 of 33 plants surveyed in the Aiyura Valley and a combination of farmer interviews and literature records provided evidence for the beetles being pestiferous on 43 crops currently or previously grown in the Highlands. Adult weevils had a distinct diurnal pattern of being in the upper plant canopy early in the morning and, to a lesser extent, again late in the afternoon. For the remainder of the day beetles resided within the canopy, or possibly off the plant. Movement of adults between plants appeared frequent. Pot trials confirmed the larvae are root feeders. Quantified impact studies showed that the weevils are damaging to a range of vegetable and orchard crops (broccoli, capsicum, celery, French bean, Irish potato, lettuce, orange and strawberry), causing average yield losses of around 30-40%, but up to 100% on citrus. Oribius weevils pose a significant and apparently growing problem for Highland’s agriculture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1 Diachasmimorpha krausii is a braconid parasitoid of larval tephritid fruit flies, which feed cryptically within host fruit. At the ovipositor probing stage, the wasp cannot discriminate between hosts that are physiologically suitable or unsuitable for offspring development and must use other cues to locate suitable hosts. 2 To identify the cues used by the parasitoid to find suitable hosts, we offered, to free flying wasps, different combinations of three fruit fly species (Bactrocera tryoni, Bactrocera cacuminata, Bactrocera cucumis), different life stages of those flies (adults and larvae) and different host plants (Solanum lycopersicon, Solanum mauritianum, Cucurbita pepo). In the laboratory, the wasp will readily oviposit into larvae of all three flies but successfully develops only in B. tryoni. Bactrocera tryoni commonly infests S. lycopersicon (tomato), rarely S. mauritianum (wild tobacco) but never C. pepo (zucchini). The latter two plant species are common hosts for B. cacuminata and B. cucumis, respectively. 3 The parasitoid showed little or no response to uninfested plants of any of the test species. The presence of adult B. tryoni, however, increased parasitoid residency time on uninfested tomato. 4 When the three fruit types were all infested with larvae, parasitoid response was strongest to tomato, regardless of whether the larvae were physiologically suitable or unsuitable for offspring development. By contrast, zucchini was rarely visited by the wasp, even when infested with B. tryoni larvae. 5 Wild tobacco was infrequently visited when infested with B. cacuminata larvae but was more frequently visited, with greater parasitoid residency time and probing, when adult flies (either B. cacuminata or B. tryoni) were also present. 6 We conclude that herbivore-induced, nonspecific host fruit wound volatiles were the major cue used by foraging D. krausii. Although positive orientation to infested host plants is well known from previous studies on opiine braconids, the failure of the wasp to orientate to some plants even when infested with physiologically suitable larvae, and the secondary role played by adult fruit flies in wasp host searching, are newly-identified mechanisms that may aid parasitoid host location in environments where both physiologically suitable and unsuitable hosts occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diachasmimorpha kraussii (Hymenoptera: Braconidae: Opiinae) is a koinobiont larval parasitoid of dacine fruit flies of the genus Bactrocera (Diptera: Tephritidae) in its native range (Australia, Papua New Guinea, Solomon Islands). The wasp is a potentially important control agent for pest fruit flies, having been considered for both classical and inundative biological control releases. I investigated the host searching, selection and utilisation mechanisms of the wasp against native host flies within its native range (Australia). Such studies are rare in opiine research where the majority of studies, because of the applied nature of the research, have been carried out using host flies and environments which are novel to the wasps. Diachasmimorpha kraussii oviposited equally into maggots of four fruit fly species, all of which coexist with the wasp in its native range (Australia), when tested in a choice trial using a uniform artificial diet media. While eggs laid into Bactrocera tryoni and B. jarvisi developed successfully through to adult wasps, eggs laid into B. cucumis and B. cacuminata were encapsulated. These results suggest that direct larval cues are not an important element in host selection by D. kraussii. Further exploring how D. kraussii locates suitable host larvae, I investigated the role of plant cues in host searching and selection. This was examined in a laboratory choice trial using uninfested fruit or fruit infested with either B. tryoni or B. jarvisi maggots. The results showed a consistent preference ranking among infested fruits by the wasp, with guava and peach most preferred, but with no response to uninfested fruits. Thus, it appears the wasp uses chemical cues emitted in response to fruit fly larval infestation for host location, but does not use cues from uninfested fruits. To further tease apart the role of (i) suitable and non-suitable maggots, (ii) infested and uninfested fruits of different plant species, and (iii) adult flies, in wasp host location and selection, I carried out a series of behavioural tests where I manipulated these attributes in a field cage. These trials confirmed that D. kraussii did not respond to cues in uninfested fruits, that there were consistent preferences by the wasps for different maggot infested fruits, that fruit preference did not vary depending on whether the maggots were physiologically suitable or not suitable for wasp offspring development, and finally, that adult flies appear to play a secondary role as indicators of larval infestation. To investigate wasp behaviour in an unrestrained environment, I concurrently observed diurnal foraging behaviours of both the wasp and one of its host fly in a small nectarine orchard. Wasp behaviour, both spatially and temporally, was not correlated with adult fruit fly behaviour or abundance. This study reinforced the point that infested fruit seems to be the primary cue used by foraging wasps. Wasp and fly feeding and mating was not observed in the orchard, implying these activities are occurring elsewhere. It is highly unlikely that these behaviours were happening within the orchard during the night as both insects are diurnal. As the final component of investigating host location, I carried out a habitat preference study for the wasp at the landscape scale. Using infested sentinel fruits, I tested the parasitism rate of B. tryoni in eucalyptus sclerophyll forest, rainforest and suburbia in South East Queensland. Although, rainforest is the likely endemic habitat of both B. tryoni and D. kraussii, B. tryoni abundance is significantly greater in suburban environments followed by eucalyptus sclerophyll forest. Parasitism rate was found to be higher in suburbia than in the eucalyptus sclerophyll forest, while no parasitism was recorded in the rainforest. This result suggests that wasps orient within the landscape towards areas of high host density and are not restricted by habitat types. Results from the different experiments suggest that host searching, selection and utilisation behaviour of D. kraussii are strongly influenced by cues associated with fruit fly larval feeding. Cues from uninfested fruits, the host larvae themselves, and the adult host flies play minimal roles. The discussion focuses on the fit of D. kraussii to Vinson’s classical parasitoid host location model and the implications of results for biological control, including recommendations for host and plant preference screening protocols and release regimes.