184 resultados para healing of bone fracture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical microenvironment at a fracture site could potentially influence the outcomes of bone fracture healing. It is known that, should the fixation construct be too stiff, or the gap between the fracture ends be too large, bones are less likely to heal. Flexible fixation or so-called “biological fixation” has been shown to encourage the formation of fracture callus, and therefore result in better healing outcomes. However, till date the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and optimal healing fracture healing outcomes has not been fully understood. This paper presents a computational model that can predict healing out-comes from early stage healing data under various fixation configurations. The results of the simulations demonstrate that the change of mechanical microenvironment of fracture site resulting from the different fixation configurations is of importance for the healing outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High energy bone fractures resulting from impact trauma are often accompanied by subcutaneous soft tissue injuries, even if the skin remains intact. There is evidence that such closed soft tissue injuries affect the healing of bone fractures, and vice versa. Despite this knowledge, most impact trauma studies in animals have focussed on bone fractures or soft tissue trauma in isolation. However, given the simultaneous impact on both tissues a better understanding of the interaction between these two injuries is necessary to optimise clinical treatment. The aim of this study was therefore to develop a new experimental model and characterise, for the first time, the healing of a complex fracture with concurrent closed soft tissue trauma in sheep. A pendulum impact device was designed to deliver a defined and standardised impact to the distal thigh of sheep, causing a reproducible contusion injury to the subcutaneous soft tissues. In a subsequent procedure, a reproducible femoral butterfly fracture (AO C3-type) was created at the sheep’s femur, which was initially stabilised for 5 days by an external fixator construct to allow for soft tissue swelling to recede, and ultimately in a bridging construct using locking plates. The combined injuries were applied to twelve sheep and the healing observed for four or eight weeks (six animals per group) until sacrifice. The pendulum impact led to a moderate to severe circumferential soft tissue injury with significant bruising, haematomas and partial muscle disruptions. Posttraumatic measurements showed elevated intra-compartmental pressure and circulatory tissue breakdown markers, with recovery to normal, pre-injury values within four days. Clinically, no neurovascular deficiencies were observed. Bi-weekly radiological analysis of the healing fractures showed progressive callus healing over time, with the average number of callus bridges increasing from 0.4 at two weeks to 4.2 at eight weeks. Biomechanical testing after sacrifice showed increasing torsional stiffness between four and eight weeks healing time from 10% to 100%, and increasing ultimate torsional strength from 10% to 64% (relative to the contralateral control limb). Our results demonstrate the robust healing of a complex femur fracture in the presence of a severe soft tissue contusion injury in sheep and demonstrate the establishment of a clinically relevant experimental model, for research aimed at improving the treatment of bone fractures accompanied by closed soft tissue injuries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iterative computational models have been used to investigate the regulation of bone fracture healing by local mechanical conditions. Although their predictions replicate some mechanical responses and histological features, they do not typically reproduce the predominantly radial hard callus growth pattern observed in larger mammals. We hypothesised that this discrepancy results from an artefact of the models’ initial geometry. Using axisymmetric finite element models, we demonstrated that pre-defining a field of soft tissue in which callus may develop introduces high deviatoric strains in the periosteal region adjacent to the fracture. These bone-inhibiting strains are not present when the initial soft tissue is confined to a thin periosteal layer. As observed in previous healing models, tissue differentiation algorithms regulated by deviatoric strain predicted hard callus forming remotely and growing towards the fracture. While dilatational strain regulation allowed early bone formation closer to the fracture, hard callus still formed initially over a broad area, rather than expanding over time. Modelling callus growth from a thin periosteal layer successfully predicted the initiation of hard callus growth close to the fracture site. However, these models were still susceptible to elevated deviatoric strains in the soft tissues at the edge of the hard callus. Our study highlights the importance of the initial soft tissue geometry used for finite element models of fracture healing. If this cannot be defined accurately, alternative mechanisms for the prediction of early callus development should be investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis successfully introduced the intellectual framework of immunology in the development of bone biomaterials. The project identified the regulatory role of biomaterials to the immune-response in terms of bone formation and healing of bone defects. The novel methods developed in the project will significantly change the ways of biomaterials assessment and evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fracture healing process is modulated by the mechanical environment created by imposed loads and motion between the bone fragments. Contact between the fragments obviously results in a significantly different stress and strain environment to a uniform fracture gap containing only soft tissue (e.g. haematoma). The assumption of the latter in existing computational models of the healing process will hence exaggerate the inter-fragmentary strain in many clinically-relevant cases. To address this issue, we introduce the concept of a contact zone that represents a variable degree of contact between cortices by the relative proportions of bone and soft tissue present. This is introduced as an initial condition in a two-dimensional iterative finite element model of a healing tibial fracture, in which material properties are defined by the volume fractions of each tissue present. The algorithm governing the formation of cartilage and bone in the fracture callus uses fuzzy logic rules based on strain energy density resulting from axial compression. The model predicts that increasing the degree of initial bone contact reduces the amount of callus formed (periosteal callus thickness 3.1mm without contact, down to 0.5mm with 10% bone in contact zone). This is consistent with the greater effective stiffness in the contact zone and hence, a smaller inter-fragmentary strain. These results demonstrate that the contact zone strategy reasonably simulates the differences in the healing sequence resulting from the closeness of reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earlier studies have shown that the influence of fixation stability on bone healing diminishes with advanced age. The goal of this study was to unravel the relationship between mechanical stimulus and age on callus competence at a tissue level. Using 3D in vitro micro-computed tomography derived metrics, 2D in vivo radiography, and histology, we investigated the influences of age and varying fixation stability on callus size, geometry, microstructure, composition, remodeling, and vascularity. Compared were four groups with a 1.5-mm osteotomy gap in the femora of Sprague–Dawley rats: Young rigid (YR), Young semirigid (YSR), Old rigid (OR), Old semirigid (OSR). Hypothesis was that calcified callus microstructure and composition is impaired due to the influence of advanced age, and these individuals would show a reduced response to fixation stabilities. Semirigid fixations resulted in a larger ΔCSA (Callus cross-sectional area) compared to rigid groups. In vitro μCT analysis at 6 weeks postmortem showed callus bridging scores in younger animals to be superior than their older counterparts (pb0.01). Younger animals showed (i) larger callus strut thickness (pb0.001), (ii) lower perforation in struts (pb0.01), and (iii) higher mineralization of callus struts (pb0.001). Callus mineralization was reduced in young animals with semirigid fracture fixation but remained unaffected in the aged group. While stability had an influence, age showed none on callus size and geometry of callus. With no differences observed in relative osteoid areas in the callus ROI, old as well as semirigid fixated animals showed a higher osteoclast count (pb0.05). Blood vessel density was reduced in animals with semirigid fixation (pb0.05). In conclusion, in vivo monitoring indicated delayed callus maturation in aged individuals. Callus bridging and callus competence (microstructure and mineralization) were impaired in individuals with an advanced age. This matched with increased bone resorption due to higher osteoclast numbers. Varying fixator configurations in older individuals did not alter the dominant effect of advanced age on callus tissue mineralization, unlike in their younger counterparts. Age-associated influences appeared independent from stability. This study illustrates the dominating role of osteoclastic activity in age-related impaired healing, while demonstrating the optimization of fixation parameters such as stiffness appeared to be less effective in influencing healing in aged individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secondary fracture healing in long bones leads to the successive formation of intricate patterns of tissues in the newly formed callus. The main aim of this work was to quantitatively describe the topology of these tissue patterns at different stages of the healing process and to generate averaged images of tissue distribution. This averaging procedure was based on stained histological sections (2, 3, 6, and 9 weeks post-operatively) of 64 sheep with a 3 mm tibial mid-shaft osteotomy, stabilized either with a rigid or a semi-rigid external fixator. Before averaging, histological images were sorted for topology according to six identified tissue patterns. The averaged images were obtained for both fixation types and the lateral and medial side separately. For each case, the result of the averaging procedure was a collection of six images characterizing quantitatively the progression of the healing process. In addition, quantified descriptions of the newly formed cartilage and the bone area fractions (BA/TA) of the bony callus are presented. For all cases, a linear increase in the BA/TA of the bony callus was observed. The slope was greatest in the case of the most rigid stabilization and lowest in the case of the least stiff. This topological description of the progression of bone healing will allow quantitative validation (or falsification) of current mechano-biological theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fracture healing is influenced by fixation stability and experimental evidence suggests that the initial mechanical conditions may determine the healing outcome. We hypothesised that mechanical conditions influence not only the healing outcome, but also the early phase of fracture healing. Additionally, it was hypothesised that decreased fixation stability characterised by an increased shear interfragmentary movement results in a delay in healing. Sixty-four sheep underwent a mid-shaft tibial osteotomy which was treated with either a rigid or a semi-rigid external fixator. Animals were sacrificed at 2, 3, 6 and 9 weeks postoperatively and the fracture callus was analysed using radiological, biomechanical and histological techniques. The tibia treated with semi-rigid fixation showed inferior callus stiffness and quality after 6 weeks. At 9 weeks, the calluses were no longer distinguishable in their mechanical competence. The calluses at 9 weeks produced under rigid fixation were smaller and consisted of a reduced fibrous tissue component. These results demonstrate that the callus formation over the course of healing differed both morphologically and in the rate of development. In this study, we provide evidence that the course of healing is influenced by the initial fixation stability. The semi-rigid fixator did not result in delayed healing, but a less optimal healing path was taken. An upper limit of stability required for successful healing remains unknown, however a limit by which healing is less optimal has been determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible fixation or the so-called ‘biological fixation’ has been shown to encourage the formation of fracture callus, leading to better healing outcomes. However, the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and the optimal healing outcomes has not been fully understood. In this study, we have developed a validated quantitative model to predict how cells in fracture callus might respond to change in their mechanical microenvironment due to different configurations of locking compression plate (LCP) in clinical practice, particularly in the early stage of healing. The model predicts that increasing flexibility of the LCP by changing the bone–plate distance (BPD) or the plate working length (WL) could enhance interfragmentary strain in the presence of a relatively large gap size (.3 mm). Furthermore, conventional LCP normally results in asymmetric tissue development during early stage of callus formation, and the increase of BPD or WL is insufficient to alleviate this problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone is important because it provides the skeleton structural integrity and enables movement and locomotion. Its development and morphology follow its function. It adapts to changes of mechanical loading and has the ability to repair itself after damage or fracture. The processes of bone development, bone adaptation, and bone regeneration in fracture healing are regulated, in part, by mechanical stimuli that result when the bone is loaded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Bone healing is sensitive to the initial mechanical conditions with tissue differentiation being determined within days of trauma. Whilst axial compression is regarded as stimulatory, the role of interfragmentary shear is controversial. The purpose of this study was to determine how the initial mechanical conditions produced by interfragmentary shear and torsion differ from those produced by axial compressive movements. ----- ----- Methods: The finite element method was used to estimate the strain, pressure and fluid flow in the early callus tissue produced by the different modes of interfragmentary movement found in vivo. Additionally, tissue formation was predicted according to three principally different mechanobiological theories. ----- ----- Findings: Large interfragmentary shear movements produced comparable strains and less fluid flow and pressure than moderate axial interfragmentary movements. Additionally, combined axial and shear movements did not result in overall increases in the strains and the strain magnitudes were similar to those produced by axial movements alone. Only when axial movements where applied did the non-distortional component of the pressure–deformation theory influence the initial tissue predictions. ----- ----- Interpretation: This study found that the mechanical stimuli generated by interfragmentary shear and torsion differed from those produced by axial interfragmentary movements. The initial tissue formation as predicted by the mechanobiological theories was dominated by the deformation stimulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoclasts are specialised bone-resorbing cells. This particular ability makes osteoclasts irreplaceable for the continual physiological process of bone remodelling as well as for the repair process during bone healing. Whereas the effects of systemic diseases on osteoclasts have been described by many authors, the spatial and temporal distribution of osteoclasts during bone healing seems to be unclear so far. In the present study, healing of a tibial osteotomy under standardised external fixation was examined after 2, 3, 6 and 9 weeks (n = 8) in sheep. The osteoclastic number was counted, the area of mineralised bone tissue was measured histomorphometrically and density of osteoclasts per square millimetre mineralised tissue was calculated. The osteoclastic density in the endosteal region increased, whereas the density in the periosteal region remained relatively constant. The density of osteoclasts within the cortical bone increased slightly over the first 6 weeks, however, there was a more rapid increase between the sixth and ninth weeks. The findings of this study imply that remodelling and resorption take place already in the very early phase of bone healing. The most frequent remodelling process can be found in the periosteal callus, emphasising its role as the main stabiliser. The endosteal space undergoes resorption in order to recanalise the medullary cavity, a process also started in the very early phase of healing at a low level and increasing significantly during healing. The cortical bone adapts in its outward appearance to the surrounding callus structure. This paradoxic loosening is caused by the continually increasing number and density of osteoclasts in the cortical bone ends. This study clearly emphasises the osteoclastic role especially during early bone healing. These cells do not simply resorb bone but participate in a fine adjusted system with the bone-producing osteoblasts in order to maintain and improve the structural strength of bone tissue.